Environmental and Resource Economics

, Volume 39, Issue 4, pp 411–432 | Cite as

Optimal compliance with emission constraints: dynamic characteristics and the choice of technique

  • Ralph Winkler


The paper analyzes how to comply with an emission constraint, which restricts the use of an established energy technique, given the two options to save energy and to invest in two alternative energy techniques. These techniques differ in their deterioration rates and the investment lags of the corresponding capital stocks. Thus, the paper takes a medium-term perspective on climate change mitigation, where the time horizon is too short for technological change to occur, but long enough for capital stocks to accumulate and deteriorate. It is shown that, in general, only one of the two alternative techniques prevails in the stationary state, although, both techniques might be utilized during the transition phase. Hence, while in a static economy only one technique is efficient, this is not necessarily true in a dynamic economy.


Climate change mitigation Dynamic characteristics Emission targets Environmental policy Optimal structural change Replacement of energy techniques Static versus dynamic efficiency Time-lagged dynamic optimization 


Q48 Q53 C61 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaheim H (1999). Climate policy with multiple sources and sinks of greenhouse gases. Environ Resour Econ 14: 413–429 CrossRefGoogle Scholar
  2. Aidt TS and Dutta J (2004). Transitional politics: emerging incentive-based instruments in environmental regulation. J Environ Econ Manage 47: 458–479 CrossRefGoogle Scholar
  3. Asea PK and Zak PJ (1999). Time-to-build and cycles. J Econ Dyn Control 23: 1155–1175 CrossRefGoogle Scholar
  4. Baumgärtner S, Schiller J (2001) Vielfalt und Nachhaltigkeit. Der Einfluss von Beständen und des Zeithorizonts auf zukünftige ökonomische Wahlmöglichkeiten. Z Angew. Umweltforschung, Special issue 13/2001:137–148Google Scholar
  5. Bellman R and Cooke KL (1963). Differential-difference equations. Academic, New York Google Scholar
  6. Bhaduri A (1968). An aspect of project selection: durability vs. construction-period. Econ J 78: 344–348 CrossRefGoogle Scholar
  7. von Böhm-Bawerk E ([1889]1921) Kapital und Kapitalzins. Positive Theorie des Kapitals (Capital and Interest. The Positive Theory of Capital), 4th edn. First published in 1889. Macmillan, LondonGoogle Scholar
  8. Böhringer C (2003). The Kyoto protocol: a review and perspectives. Oxford Rev Econ Policy 19: 451–466 CrossRefGoogle Scholar
  9. Böhringer C and Vogt C (2003). Economic and environmental impacts of the Kyoto protocol. Can J Econ 36: 475–494 CrossRefGoogle Scholar
  10. Boucekkine R, Licandro O, Puch LA and del Rio F (2005). Vintage capital and the dynamics of the AK model. J Econ Theory 120: 39–72 CrossRefGoogle Scholar
  11. Buonanno P, Carraro C and Galeotti M (2003). Endogenous induced technical change and the costs of Kyoto. Resour Energy Econ 25: 11–34 CrossRefGoogle Scholar
  12. Carraro C, Gerlagh R and van der Zwaan B (2003). Endogenous technical change in environmental maroeconomics. Resour Energy Econ 25: 1–10 CrossRefGoogle Scholar
  13. Chichilnisky G (1996). An axiomatic approach to sustainable development. Soc Choice Welf 13: 231–257 CrossRefGoogle Scholar
  14. Dellink R, Hofkes M, van Ierland E and Verbruggen H (2004). Dynamic modelling of pollution abatement in a CGE framework. Econ Model 21: 965–989 CrossRefGoogle Scholar
  15. Diehl M, Leineweber DB, Schäfer AAS (2001) Muscod-II users’ manual. Preprint 2001-25, Interdisciplinary Center for Scientific Computing, University of Heidelberg, HeidelbergGoogle Scholar
  16. El-Hodiri MA, Loehman E and Whinston A (1972). An optimal growth model with time lags. Econometrica 40: 1137–1146 CrossRefGoogle Scholar
  17. Endres A and Finus M (1999). International environmental agreements: how the policy instrument affects equilibrium emissions. J Inst Theor Econ 155: 527–550 Google Scholar
  18. Endres A and Finus M (2002). Quotas may beat taxes in a global emission game. Int Tax Public Finance 9: 687–707 CrossRefGoogle Scholar
  19. Faber M (1979). Introduction to modern Austrian capital theory. Springer, Heidelberg Google Scholar
  20. Falk I and Mendelsohn R (1993). The economics of controlling stock pollutants: an efficient strategy for greenhouse gases. J Environ Econ Manage 25: 76–88 CrossRefGoogle Scholar
  21. Feichtinger G, Hartl RF, Kort PM and Veliov MV (2006). Anticipation effects of technological progress on capital accumulation: A vintage capital approach. J Econ Theory 126: 143–164 CrossRefGoogle Scholar
  22. Feichtinger G, Novak A and Wirl F (1994). Limit cycles in intertemporal adjustment models: theory and application. J Econ Dyn Control 18: 353–380 CrossRefGoogle Scholar
  23. Fisher C, Parry I and Pizer W (2003). Instrument choice for environmental protection when technological innovation is endogenous. J Environ Econ Manage 45: 523–545 CrossRefGoogle Scholar
  24. Gandolfo G (1996). Economic dynamics, Third, completely revised and enlarged edition. Springer, Berlin Google Scholar
  25. Gerlagh R and Lise W (2005). Carbon taxes: a drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change. Ecol Econ 54: 241–260 CrossRefGoogle Scholar
  26. Gerlagh R and van der Zwaan B (2003). Gross world product and consumption in a global warming model with endogenous technological change. Resour Energy Econ 25: 35–57 CrossRefGoogle Scholar
  27. Gersbach H and Glazer A (1999). Markets and regulatory hold-up problems. J Environ Econ Manage 37: 151–164 CrossRefGoogle Scholar
  28. Gersbach H and Requate T (2004). Emission taxes and optimal refunding schemes. J Public Econ 88: 713–725 CrossRefGoogle Scholar
  29. Gollier C and Treich N (2003). Decision-making under scientific uncertainty: the economics of the Precautionary Principle. J Risk Uncertain 27: 77–103 CrossRefGoogle Scholar
  30. Goulder LH and Mathai K (2000). Optimal CO2 abatement in the presence of induced technological change. J Environ Econ Manage 39: 1–38 CrossRefGoogle Scholar
  31. Goulder LH and Schneider SH (1999). Induced technological change and the attractiveness of CO2 abatement policies. Resour Energy Econ 21: 211–253 CrossRefGoogle Scholar
  32. Hale J (1977). Theory of functional differential equations. Springer, New York Google Scholar
  33. Hicks JR (1973). Capital and time: a neo-Austrian theory. Clarendon, Oxford Google Scholar
  34. Hoel M and Karp L (2000). Taxes versus quotas for a stock pollutant. Resour Energy Econ 24: 367–384 CrossRefGoogle Scholar
  35. IEA (2005) Projected costs of generating electricity—2005 update. OECD Nuclear Energy Agency (NEA) and International Energy Agency (IEA), ParisGoogle Scholar
  36. Ioannides YM and Taub B (1992). On dynamics with time-to-build investment and non-separable leisure. J Econ Dyn Control 16: 225–241 CrossRefGoogle Scholar
  37. Karp L (2005). Global warming and hyperbolic discounting. J Public Econ 89: 261–282 CrossRefGoogle Scholar
  38. Kolstad CD (1996). Learning and stock effects in environmental regulation: the case of greenhouse gas emissions. J Environ Econ Manage 31: 1–18 CrossRefGoogle Scholar
  39. Kydland FE and Prescott EC (1982). Time to build and aggregate fluctuations. Econometrica 50: 1345–1370 CrossRefGoogle Scholar
  40. Laffont JJ and Tirole J (1996). Pollution permits and compliance strategies. J Public Econ 62: 85–125 CrossRefGoogle Scholar
  41. Lange A (2003). Climate change and the irreversibility effect—combining expected utility and maximin. Environ Resour Econ 25: 417–434 CrossRefGoogle Scholar
  42. Leineweber DB, Bauer I, Bock HG and Schlöder JP (2003). An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization—part I: theoretical aspects. Comput Chem Eng 27: 157–166 CrossRefGoogle Scholar
  43. Li CZ and Löfgren KG (2000). Renewable resources and economic sustainability: a dynamic analysis with heterogenous time preferences. J Environ Econ Manage 40: 236–250 CrossRefGoogle Scholar
  44. Lind RC (ed) (1982). Discounting for time and risk in energy policy. John Hopkins University Press, Baltimore Google Scholar
  45. Liski M, Kort PM and Novak A (2001). Increasing returns and cycles in fishing. Resour Energy Econ 23: 241–258 CrossRefGoogle Scholar
  46. Löschel A (2002). Technological change in economic models of environmental policy: a survey. Ecol Econ 43: 105–126 CrossRefGoogle Scholar
  47. Moledina AA, Coggins JS, Polasky S and Costello C (2003). Dynamic environmental policy with strategic firms: prices versus quantities. J Environ Econ Manage 45: 356–376 CrossRefGoogle Scholar
  48. Montero JP (2002). Permits, standards and technology innovation. J Environ Econ Manage 44: 23–44 CrossRefGoogle Scholar
  49. Moslener U, Requate T (forthcoming) Optimal abatement in dynamic multi-pollutant problems when pollutants can be complements or substitutes. J Econ Dyn ControlGoogle Scholar
  50. Newell RG, Jaffe AB and Stavins RN (1999). The induced innovation hypothesis and energy-saving technological change. Q J Econ 114: 941–975 CrossRefGoogle Scholar
  51. Newell RG and Pizer WA (2003). Regulating stock externalities under uncertainty. J Environ Econ Manage 45: 416–432 CrossRefGoogle Scholar
  52. Nordhaus WD (2002) Modeling induced innovation in climate-change policy. In Grübler A, Nakicenovic N, Nordhaus WD (eds) Technological change and the environment. Resources for the Future, pp 182–209Google Scholar
  53. Nuti DM (1970). Capitalism, socialism and steady growth. Econ J 80: 32–57 CrossRefGoogle Scholar
  54. Pezzey JCV (2003). Emission taxes and tradeable permits: a comparison of views on long-run efficiency. Environ Resour Econ 26: 329–342 CrossRefGoogle Scholar
  55. Phaneuf DJ and Requate T (2002). Incentives for investment in advanced pollution abatement technology in emission permit markets with banking. Environ Resour Econ 22: 369–390 CrossRefGoogle Scholar
  56. Pizer WA (2002). Combining price and quality controls to mitigate global climate change. J Public Econ 85: 409–434 CrossRefGoogle Scholar
  57. Portney PR, Weyant JP (eds) (1999). Discounting and intergenerational equity. Resources for the Future, Washington, DC Google Scholar
  58. Requate T (forthcoming) Commitment and timing of environmental policy, adoption of new technology, and repurcussions on R&D. Environ Resour EconGoogle Scholar
  59. Requate T and Unold W (2003). Environmental policy incentives to adopt advanced abatement technology—will the true ranking please stand up. Eur Econ Rev 47: 125–146 CrossRefGoogle Scholar
  60. Rubio SJ and Casino B (2005). Self-enforcing international environmental agreements with a stock pollutant. Span Econ Rev 7: 89–109 CrossRefGoogle Scholar
  61. Ulph A and Ulph D (1997). Global warming, irreversibility and learning. Econ J 107: 636–649 CrossRefGoogle Scholar
  62. United Nations Third Conference of the Parties of the Framework Convention on Climate Change (1997) Kyoto protocol to the United Nations framework convention on climate change. United NationsGoogle Scholar
  63. Weitzman ML (1998). Why the far distant future should be discounted at its lowest possible rate. J Environ Econ Manage 36: 201–208 CrossRefGoogle Scholar
  64. von Weizsäcker CC (1971). Steady state capital theory. Springer, Berlin Google Scholar
  65. Winkler R (2003) Zeitverzögerte Dynamik von Kapital- und Schadstoffbeständen. Eine österreichische Perspective (Time-lagged Dynamics of Capital Stocks and Stocks of Pollutants. An Austrian Perspektive). Metropolis, MarburgGoogle Scholar
  66. Winkler R (2004) Time-lagged accumulation of stock pollutants. Additively separable welfare functions reconsidered. Discussion-Paper No. 408, Alfred Weber-Institute of Economics, University of HeidelbergGoogle Scholar
  67. Winkler R (2005). Structural change with joint production of consumption and environmental pollution: a neo-Austrian approach. Struct Change Econ Dyn 16: 111–135 CrossRefGoogle Scholar
  68. Winkler R, Brand-Pollmann U, Moslener U, Schlöder J (2005) On the transition from instantaneous to time-lagged capital accumulation. The case of Leontief-type production functions. Discussion-Paper No. 05-30, Centre for European Economic Research (ZEW), MannheimGoogle Scholar
  69. Winkler R, Brandt-Pollmann U, Moslener U, Schlöder JP (2004) Time lags in capital accumulation. In: Ahr D, Fahrion R, Oswald M, Reinelt G (eds) Operations research proceedings. Springer, HeidelbergGoogle Scholar
  70. Wirl F (1995). The cyclical exploitation of renewable resource stocks may be optimal. J Environ Econ Manage 29: 252–261 CrossRefGoogle Scholar
  71. Wirl F (1999). Complex, dynamic environmental policies. Resour Energy Econ 21: 19–41 CrossRefGoogle Scholar
  72. Wirl F (2002). Stability and limit cycles in competitive equilibria subject to adjustment costs and dynamic spillovers. J Econ Dyn Control 26: 375–398 CrossRefGoogle Scholar
  73. Yang Z (2003). Reevaluation and renegotiation of climate change coalitions—a sequential closed-loop game approach. J Econ Dyn Control 27: 1563–1594 CrossRefGoogle Scholar
  74. van der Zwaan BCC, Gerlagh R, Klaassen G and Schrattenholzer L (2002). Endogenous technological change in climate change modelling. Energy Econ 24: 1–19 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.CER-ETH—Center of Economic Research at ETH ZurichZurichSwitzerland

Personalised recommendations