Environmental and Resource Economics

, Volume 34, Issue 1, pp 45–50

Comment on “Revealing Differences in Willingness to Pay Due to the Dimensionality of Stated Choice Designs: An Initial Assessment”

Article
  • 85 Downloads

Abstract

There are very few studies that quantify the interactions and tradeoffs between statistical and cognitive efficiency in designing stated-choice studies. While a conceptual framework for evaluating cognitive strategies would be desirable, Hensher adopts a strictly empirical approach in this experiment. The success of the study must be evaluated in light of his aggregating attributes rather than controlling the number of attributes, asymmetry in the narrow-range and wide-range attributes, and lack of orthogonality between the number of attributes and number of alternatives. Nevertheless, Hensher challenges uncritical acceptance of any given set of design features and correctly insists that we confirm our experience with rigorous, quantitative experiments.

Keywords

choice experiments experimental design stated-choice methods stated preference transportation economics 

JEL classification

C25 C93 R41 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arentze, T., Borgers, A., DelMistro, R., Timmermans, H. 2003‘Transport Stated Choice Responses: Effects of Task Complexity, Presentation Format and Literacy’Transport Research E39229244CrossRefGoogle Scholar
  2. Ben-Akiva, M., Morikawa, T., Shiroishi, F. 1992‘Analysis of the Reliability of Preference Ranking Data’Journal of Business Research24149164CrossRefGoogle Scholar
  3. Blamey, R., Bennett, J., Louviere, J., Morrison, M., Rolfe, J. 2000‘A Test of Policy Labels in Environmental Choice Modeling Studies’Ecological Economics32269286CrossRefGoogle Scholar
  4. Boyle, K. J., Holmes, T. P., Teisl, M. F., Roe, B. 2001‘Comparison of Conjoint Analysis Response Formats’American Journal of Agricultural Economics83441454CrossRefGoogle Scholar
  5. Bryan, S., Gold, L., Sheldon, R., Buxton, M. 2000‘Preference Measurement Using Conjoint Methods: An Empirical Investigation of Reliability’Health Economics9385395CrossRefGoogle Scholar
  6. Darmon, R. Y., Rouziès, D. 1991‘Internal Validity Assessment of Conjoint Estimated Attribute Importance Weights’Journal of The Academy of Marketing Science19315322Google Scholar
  7. Kuhfeld, W. 2004Marketing Research Methods in SAS, TS-694SAS InstituteCarey, North CarolinaGoogle Scholar
  8. Louviere, J. J. 2001‘What If Consumer Experiments Impact Variances as Well as Means: Response Variability as a Behavioral Phenomenon’Journal of Consumer Research28506511CrossRefGoogle Scholar
  9. Louviere, J. J., Street, D. J., Burgess, L. 2003

    A 20+ Years Retrospective on Choice Experiments

    Yoram, WindGreen Paul, E. eds. Marketing Research and Modeling: Progress and ProspectsKluwer Academic PublishersNew York
    Google Scholar
  10. Louviere, J., Street, D., Carson, R., Ainslie, A., DeShazo, J., Cameron, T., Hensher, D., Kohn, R., Marley, T. 2002‘Dissecting the Random Component of Utility’Marketing Letters13177193CrossRefGoogle Scholar
  11. Louviere, J., Hensher, D., Swait, J. 2002Stated Choice Methods: Analysis and ApplicationCambridge University PressCambridge, UKGoogle Scholar
  12. Maddala, T., Phillips, K. A., Johnson, F. R. 2003‘An Experiment on Simplifying Conjoint Analysis Exercises for Measuring HIV Testing Preferences’Health Economics1210351047CrossRefGoogle Scholar
  13. Simonson, I., Tversky, A. 1992‘Choice in Context: Tradeoff Contrast and Extremeness Aversion’Journal of Marketing Research29281296CrossRefGoogle Scholar
  14. Slovic, P. 1995‘The Construction of Preference’American Psychologist50364371CrossRefGoogle Scholar
  15. Steenkamp, J. -B. E. M., Wittink, D. R. 1994‘The Metric Quality of Full-Profile Judgments and the Number-of-Attribute-Levels Effect in Conjoint Analysis’International Journal of Research in Marketing11275286CrossRefGoogle Scholar
  16. Train, K. and G. Sonnier (2004), ‘Mixed Logit with Bounded Distributions of Partworths, Forthcoming’, in A. Alberini and R. Scarpa eds., Applications of Simulation Methods in Environmental and Resource Economics. Kluwer Academic PublisherGoogle Scholar
  17. Wand, D., Jiuqun, L., Timmermans, H. 2001‘Reducing Respondent Burden, Information Processing Effort, and Incomprehensibility in Stated Preference Surveys: Principles and Properties of Paired Conjoint Analysis’Transportation Research Record17687178Google Scholar
  18. White, P. J., R. D. Johnson and J. J. Louviere (1998), The Effect of Attribute Range and Variance on Weighted Estimates. Department of Marketing, The University of Sydney (unpublished paper)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Research Triangle InstituteUSA

Personalised recommendations