Advertisement

Education and Information Technologies

, Volume 22, Issue 5, pp 2545–2563 | Cite as

Tablets in education. Results from the initiative ETiE, for teaching plants to primary school students

  • Emmanuel FokidesEmail author
  • Pinelopi Atsikpasi
Article

Abstract

The study presents the results from the first phase of the initiative Emerging Technologies in Education. At this stage, we examined the learning outcomes from the use of tablets and an application as content delivery methods for teaching plants’ parts, reproduction types and organs, photosynthesis, and respiration. The project lasted for four months and the target group was 246 sixth-grade primary school students, divided into three groups. In the first, students were taught conventionally, using notes and the textbook. In the second, a contemporary teaching method was used, but the instruction was not technologically enhanced. The third group of students used the application. Data were collected by means of questionnaires and evaluation sheets. Results indicate that students in the third group outperformed students in the other two groups. On the other hand, there were no differences between the last two groups, regarding students’ misconceptions. The findings point to the need of further investigation of the educational uses of tablets and their applications.

Keywords

Mobile learning Plants Science education Tablets Ubiquitous learning 

References

  1. Anderson, C. W., Sheldon, T. H., & Dubay, J. (1990). The effects of instruction on college nonmajors’ conceptions of respiration and photosynthesis. Journal of Research in Science Teaching, 27(8), 761–776. doi: 10.1002/tea.3660270806.CrossRefGoogle Scholar
  2. Anderson, J. L., Ellis, J. P., & Jones, A. M. (2014). Understanding early elementary children’s conceptual knowledge of plant structure and function through drawings. CBE-Life Sciences Education, 13(3), 375–386. doi: 10.1187/cbe.13-12-0230.CrossRefGoogle Scholar
  3. Andújar, J. M., Mejías, A., & Márquez, M. A. (2011). Augmented reality for the improvement of remote laboratories: an augmented remote laboratory. IEEE Transactions on Education, 54(3), 492–500. doi: 10.1109/TE.2010.2085047.CrossRefGoogle Scholar
  4. Appleton, K. (2002). Science activities that work: perceptions of primary school teachers. Research in Science Education, 32(3), 393–410. doi: 10.1023/A:1020878121184.CrossRefGoogle Scholar
  5. Bandura, A. (1977). Social learning theory. Englewood Cliffs: Prentice-Hall.Google Scholar
  6. Barman, C. R., Stein, M., McNair, S., & Barman, N. S. (2006). Students’ ideas about plants & plant growth. The American Biology Teacher, 68(2), 73–79. doi: 10.1662/0002-7685(2006)068[0073:SIAPPG]2.0.CO;2.CrossRefGoogle Scholar
  7. Bell, B. F. (1981). What is a plant: some children’s ideas. New Zealand Science Teacher, 31(3), 10–14.Google Scholar
  8. Bitter, G., & Corral, A. (2014). The pedagogical potential of augmented reality apps. International Journal of Engineering and Science Invention, 3(10), 13–17.Google Scholar
  9. Bjerede, M., & Bondi, T. (2012). Learning is personal; Stories of android tablet use in the 5th grade. A Learning Untethered Project.Google Scholar
  10. Brown, M. B., & Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the American Statistical Association, 69(346), 364–367. doi: 10.1080/01621459.1974.10482955.CrossRefzbMATHGoogle Scholar
  11. Burden, K., Hopkins, P., Male, T., Martin, S., Trala, C. (2012). iPad Scotland Evaluation. Hull: University of Hull.Google Scholar
  12. Bybee, R. W., Taylor, J. A., Gardner, A., Van Scatter, P., Carlson Powell, J., Westbrook, A., & Landes, N. (2006). BSCS SE instructional model: origins and effectiveness. A report prepared for the Office of Science education, National Institutes of Health. Colorado Springs: BSCS.Google Scholar
  13. Chang, K. E., Chang, C. T., Hou, H. T., Sung, Y. T., Chao, H. L., & Lee, C. M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185–197. doi: 10.1016/j.compedu.2013.09.022.CrossRefGoogle Scholar
  14. Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: suggestions for future research. Journal of Science Education and Technology, 22(4), 449–462. doi: 10.1007/s10956-012-9405-9.CrossRefGoogle Scholar
  15. Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149–210. doi: 10.1007/BF01320076.CrossRefGoogle Scholar
  16. Cochrane, T., Narayan, V., & Oldfield, J. (2013). iPadagogy: appropriating the iPad within pedagogical contexts. International Journal of Mobile Learning and Organisation, 7(1), 48–65. doi: 10.1504/IJMLO.2013.051573.CrossRefGoogle Scholar
  17. Corder, G. W., & Foreman, D. I. (2009). Nonparametric statistics for non-statisticians: a step-by-step approach. John Wiley & Sons. doi: 10.1002/9781118165881.zbMATHGoogle Scholar
  18. Dhir, A., Gahwaji, N. M., & Nyman, G. (2013). The role of the iPad in the hands of the learner. Journal of Universal Computer Science, 19(5), 706–727.Google Scholar
  19. Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students’ motivation for a visual art course. Computers & Education, 68, 586–596. doi: 10.1016/j.compedu.2012.03.002.CrossRefGoogle Scholar
  20. Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6, 241–252. doi: 10.1080/00401706.1964.10490181.CrossRefGoogle Scholar
  21. Ertmer, P. A., & Newby, T. J. (2013). Behaviorism, cognitivism, constructivism: comparing critical features from an instructional design perspective. Performance Improvement Quarterly, 26(2), 43–71. doi: 10.1002/piq.21143.CrossRefGoogle Scholar
  22. Forsthuber, B., Motiejunaite, A., & de Almeida-Coutinho, A. S. (2011). Science education in Europe: national policies, practices and research. Brussels: Education, Audiovisual and Culture Executive Agency, European Commission.Google Scholar
  23. Frede, V. (2006). Pre-service elementary teacher’s conceptions about astronomy. Advances in Space Research, 38(10), 2237–2246. doi: 10.1016/j.asr.2006.02.017.CrossRefGoogle Scholar
  24. French, L. (2004). Science as the center of a coherent, integrated early childhood curriculum. Early Childhood Research Quarterly, 19(1), 138–149. doi: 10.1016/j.ecresq.2004.01.004.CrossRefGoogle Scholar
  25. Games, P. A., & Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal n’s and/or variances: a Monte Carlo study. Journal of Educational and Behavioral Statistics, 1(2), 113–125. doi: 10.3102/10769986001002113.CrossRefGoogle Scholar
  26. Graham, M., Zook, M., & Boulton, A. (2013). Augmented reality in urban places: contested content and the duplicity of code. Transactions of the Institute of British Geographers, 38(3), 464–479. doi: 10.1111/j.1475-5661.2012.00539.x.CrossRefGoogle Scholar
  27. Grant, M. M., & Barbour, M. K. (2013). Mobile teaching and learning in the classroom and online: case studies in K-12. In Z. Berge & L. Muilenburg (Eds.), Handbook of mobile learning. New York: Routledge.Google Scholar
  28. Grossman, P., & Thompson, C. (2004). District policy and beginning teachers: a lens on teacher learning. Educational Evaluation and Policy Analysis, 26(4), 281–301. doi: 10.3102/01623737026004281.CrossRefGoogle Scholar
  29. Gurel, D. K., Eryilmaz, A., & McDermott, L. C. (2015). A review and comparison of diagnostic instruments to identify students’ misconceptions in science. Eurasia Journal of Mathematics, Science & Technology Education, 11(5), 989–1008.Google Scholar
  30. Hamre, B. K., & Pianta, R. C. (2006). Student-teacher relationships. In G. G. Bear & K. Minke (Eds.), Children’s needs III: development, prevention, and intervention (pp. 59–71). Washington, DC: National Association of School Psychologists.Google Scholar
  31. Harlen, W., & Qualter, A. (2014). The teaching of science in primary schools (6th ed.). England: Routledge.Google Scholar
  32. Henderson, S., & Yeow, J. (2012). iPad in education: a case study of iPad adoption and use in a primary school. Proceedings of the 45th Hawaii International Conference in System Science (hicss), 2012, 78–87 IEEE.Google Scholar
  33. Hershey, D. R. (2004). Avoid misconceptions when teaching about plants. Retrieved from http://www.actionbioscience.org/education/hershey.html
  34. Hong, N. S., McGee, S., Howard, B. C. (2000). The effect of multimedia learning environments on well-structured and ill-structured problem-solving skills. In American Educational Research Association Annual Meeting (Vol. 2000, No. 1).Google Scholar
  35. Institute of Education Sciences & National Science Foundation (2013). Common guidelines for education research and development. Washington, DC: Authors.Google Scholar
  36. Johnson, L., Adams-Becker, S., Estrada, V., & Freeman, A. (2014). Horizon report 2014-higher education edition. Austin: The New Media Consortium.Google Scholar
  37. Karsenti, T., & Fievez, A. (2013). The iPad in education: uses, benefits, and challenges-a survey of 6,057 students and 302 teachers in Quebec, Canada. Montreal: CRIFPE.Google Scholar
  38. Kearney, M., Schuck, S., Burden, K., & Aubusson, P. (2012). Viewing mobile learning from a pedagogical perspective. Research in Learning Technology, 20. doi: 10.3402/rlt.v20i0.14406.
  39. Kinash, S., Brand, J., & Mathew, T. (2012). Challenging mobile learning discourse through research: student perceptions of blackboard mobile learn and iPads. Australasian Journal of Educational Technology, 28(4), 17. doi: 10.14742/ajet.832.CrossRefGoogle Scholar
  40. Klopfer, E., & Squire, K. (2008). Environmental detectives: the development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203–228. doi: 10.1007/s11423-007-9037-6.CrossRefGoogle Scholar
  41. Koumaras, P. (2007). Τα νέα σχολικά εγχειρίδια των Φυσικών Επιστημών Ε’ και Στ’ τάξης του Δημοτικού Σχολείου: μια κριτική θεώρηση [The new Science Education textbooks for primary school’s 5th and 6th grades: A critical review]. Διδασκαλία των Φυσικών Επιστημών: Έρευνα & Πράξη, 21-22, 18–33.Google Scholar
  42. Lally, D., Brooks, E., Tax, F. E., & Dolan, E. L. (2007). Sowing the seeds of dialogue: public engagement through plant science. The Plant Cell, 19(8), 2311–2319. doi: 10.1105/tpc.107.053587.CrossRefGoogle Scholar
  43. Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance-do students see any relationship? International Journal of Science Education, 22(2), 177–195. doi: 10.1080/095006900289949.CrossRefGoogle Scholar
  44. Liu, T. C., Lin, Y. C., & Paas, F. (2014). Effects of prior knowledge on learning from different compositions of representations in a mobile learning environment. Computers & Education, 72, 328–338. doi: 10.1016/j.compedu.2013.10.019.CrossRefGoogle Scholar
  45. Marmaroti, P., & Galanopoulou, D. (2006). Pupils’ understanding of photosynthesis: a questionnaire for the simultaneous assessment of all aspects. International Journal of Science Education, 28(4), 383–403. doi: 10.1080/09500690500277805.CrossRefGoogle Scholar
  46. Martin, S., Diaz, G., Sancristobal, E., Gil, R., Castro, M., & Peire, J. (2011). New technology trends in education: seven years of forecasts and convergence. Computers & Education, 57(3), 1893–1906. doi: 10.1016/j.compedu.2011.04.003.CrossRefGoogle Scholar
  47. Mayer, R., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43–52. doi: 10.1207/S15326985EP3801_6.CrossRefGoogle Scholar
  48. McDermott, L. C., Shaffer, P. S., & Constantinou, C. P. (2000). Preparing teachers to teach physics and physical science by inquiry. Physics Education, 35, 411–416. doi: 10.1088/0031-9120/35/6/306.CrossRefGoogle Scholar
  49. Medicherla, P. S., Chang, G., Morreale, P. (2010). Visualization for increased understanding and learning using augmented reality. Proceedings of the international conference on Multimedia information retrieval, 441–444. ACM. doi:  10.1145/1743384.1743462.
  50. Mueller, J., Wood, E., Willoughby, T., Ross, C., & Specht, J. (2008). Identifying discriminating variables between teachers who fully integrate computers and teachers with limited integration. Computers & Education, 51(4), 1523–1537. doi: 10.1016/j.compedu.2008.02.003. CrossRefGoogle Scholar
  51. Norris, C., Hossain, A., & Soloway, E. (2012, March). Under what conditions does computer use positively impact student achievement? Supplemental vs. essential use. In P. Resta (Ed.), Proceedings of the Society for Information Technology and Teacher Education International Conference 2012 (pp. 2021–2028). Austin: AACE.Google Scholar
  52. Özay, E., & Öztaş, H. (2003). Secondary students’ interpretations of photosynthesis and plant nutrition. Journal of Biological Education, 37(2), 68–70. doi: 10.1080/00219266.2003.9655853. CrossRefGoogle Scholar
  53. Pengcheng, F., Mingquan, Z., & Xuesong, W. (2011). The significance and effectiveness of Augmented Reality in experimental education. Proceedings of the International Conference on E-Business and E-Government (ICEE), 1–4. IEEE. doi:  10.1109/ICEBEG.2011.5881654.
  54. Rahn, A., & Kjaergaard, H. W. (2014). Augmented reality as a visualizing facilitator in nursing education. Proceedings of the INTED, 2014, 6560–6568.Google Scholar
  55. Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75(2), 211–246. doi: 10.3102/00346543075002211.CrossRefGoogle Scholar
  56. Rikala, J., Vesisenaho, M., & Mylläri, J. (2013). Actual and potential pedagogical use of tablets in schools. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments, 9(2), 113–131. doi: 10.17011/ht/urn.201312042736. CrossRefGoogle Scholar
  57. Ross, K. N. (2005). Quantitative research methods in educational planning. Module 3: sample design for educational survey research. Paris: International Institute for Educational Planning/UNESCO.Google Scholar
  58. Roth, K. J. (1984). Using classroom observations to improve science teaching and curriculum materials. In C. W. Anderson (Ed.), Observing science classrooms: Perspectives from research and practice (pp. 77–102). Yearbook of the Association for the Education of Teachers in Science. Columbus: ERIC/SMEAC.Google Scholar
  59. Sanders, D. L. (2007). Making public the private life of plants: the contribution of informal learning environments. International Journal of Science Education, 29(10), 1209–1228. doi: 10.1080/09500690600951549.CrossRefGoogle Scholar
  60. Schussler, E., & Winslow, J. (2007). Drawing on students’ knowledge. Science and Children, 44(5), 40–44.Google Scholar
  61. Seipold, J., & Pachler, N. (2011). Evaluating mobile learning practice towards a framework for analysis of user-generated contexts with reference to the socio-cultural ecology of mobile learning. Medienpaedagogik, 19, 1–13.Google Scholar
  62. Shuler, C., Levine, Z., & Ree, J. (2012a). iLearn II: an analysis of the education category of Apple’s app store. New York: The Joan Ganz Cooney Center at Sesame Workshop.Google Scholar
  63. Shuler, C., Winters, N., & West, M. (2012b). The future of mobile learning: implications for policy makers and planners. Paris: UNESCO.Google Scholar
  64. Smith, E. L., & Anderson, C. W. (1984). Plants as producers: a case study of elementary science teaching. Journal of Research in Science Teaching, 21(7), 685–698. doi: 10.1002/tea.3660210703.CrossRefGoogle Scholar
  65. Smith III, J. P., Disessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: a constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115–163. doi: 10.1207/s15327809jls0302_1.CrossRefGoogle Scholar
  66. Snell, S., & Snell-Siddle, C. (2013). Mobile learning: The effects of gender and age on perceptions of the use of mobile tools. Proceedings of the Second International Conference on Informatics Engineering & Information Science (ICIEIS2013), 274–281. The Society of Digital Information and Wireless Communication.Google Scholar
  67. Tekos, G., & Goumas, E. (2007). Αξιολόγηση των νέων εγχειριδίων των Φυσικών της Ε’ Δημοτικού [evaluation of the new science education textbooks for primary school’s 5th grade]. Διδασκαλία των Φυσικών Επιστημών: Έρευνα & Πράξη, 23, 32–42.Google Scholar
  68. Trundle, K. C., Atwood, R. K., & Christopher, J. E. (2002). Preservice elementary teachers’ conceptions of moon phases before and after instruction. Journal of Research in Science Teaching, 39(7), 633–658. doi: 10.1002/tea.10039.CrossRefGoogle Scholar
  69. Usak, M., Prokop, P., Ozden, M., Ozel, M., Bilen, K., & Erdogan, M. (2009). Turkish university students’ attitudes toward biology: the effects of gender and enrolment in biology classes. Journal of Baltic Science Education, 8(2).Google Scholar
  70. van’t Hooft, M. (2013). The potential of mobile technologies to connect teaching and learning inside and outside of the classroom. In Emerging Technologies for the Classroom (pp. 175–186). New York: Springer. doi:  10.1007/978–1–4614-4696-5_12.
  71. Vosniadou, S. (2002). On the nature of naive physics. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: issues in theory and practice (pp. 61–76). Netherlands: Springer. doi: 10.1007/0-306-47637-1_3.CrossRefGoogle Scholar
  72. Wandersee, J. H., & Schussler, E. E. (2001). Toward a theory of plant blindness. Plant Science Bulletin, 47(1), 2–9.Google Scholar
  73. West, D. M. (2013). Mobile learning: transforming education, engaging students, and improving outcomes. Washington, DC: Center for Technology Innovation at Brookings.Google Scholar
  74. Wilson, C. D., Taylor, J. A., Kowalski, S. M., & Carlson, J. (2010). The relative effects and equity of inquiry-based and commonplace science teaching on students’ knowledge, reasoning, and argumentation. Journal of Research in Science Teaching, 47(3), 276–301.Google Scholar
  75. Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education, 68, 570–585. doi: 10.1016/j.compedu.2013.02.014.CrossRefGoogle Scholar
  76. Wong, L. H. (2012). A learner-centric view of mobile seamless learning. British Journal of Educational Technology, 43(1), E19–E23. doi: 10.1111/j.1467-8535.2011.01245.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Primary School EducationUniversity of the AegeanRhodesGreece

Personalised recommendations