Combination of a novel microtubule inhibitor MBRI-001 and gemcitabine synergistically induces cell apoptosis by increasing DNA damage in pancreatic cancer cell lines

  • Yuqian Liu
  • Ruochen Zang
  • Feifei Li
  • Chuanqin Shi
  • Jianchun Zhao
  • Lili Zhong
  • Xin Wang
  • Jinbo YangEmail author
  • Wenbao LiEmail author


Pancreatic cancer (PC) is a highly malignant cancer with poor prognosis. Although gemcitabine (GEM; 2′,2′-difluoro-deoxycytidine) has been used as the first-line chemotherapeutic agent in PC treatment for decades, its limited efficacy remains a significant clinical issue, which may be resolved by GEM combination therapy. In this study, we aimed to investigate the anti-tumor effects of MBRI-001 in combination with GEM in BxPC-3 and MIA PaCa-2 human PC cell lines. In vitro and in vivo results indicate that MBRI-001 showed synergistic activity with GEM. GEM induced apoptosis by increasing DNA damage (phosphorylated core histone protein H2AX (γ-H2AX)), MBRI-001 activated mitochondrial-apoptotic pathway (cleaved poly-ADP ribose polymerase (PARP)). Thus, the combination of the two intensified both apoptosis and DNA damage and showed significantly superior anti-tumor activity compared to each agent alone. The adoption of combination of MBRI-001 with GEM may be beneficial as they act synergistically and thus, can be a potential therapeutic choice for improving the prognosis of PC patients in the future.


Pancreatic cancer MBRI-001 Gemcitabine DNA damage Apoptosis 



This work was supported by “Zhufeng Scholar Program” of Ocean University of China (841412016), and Aoshan Talents Cultivation Program of Qingdao National Laboratory for Marine Science and Technology (No. 2017ASTCP-OS08) to Dr. Wenbao Li.

Compliance with ethical standards

Conflict of interest

All authors declare that there are no conflicts of interest.

Ethical approval

All applicable national and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. CrossRefPubMedGoogle Scholar
  2. 2.
    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M (2017) A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett 393:86–93. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Choi M, Bien H, Mofunanya A, Powers S (2019) Challenges in Ras therapeutics in pancreatic cancer. Semin Cancer Biol 54:101–108. CrossRefPubMedGoogle Scholar
  5. 5.
    Yokoyama Y, Nimura Y, Nagino M (2009) Advances in the treatment of pancreatic cancer: limitations of surgery and evaluation of new therapeutic strategies. Surg Today 39(6):466–475. CrossRefPubMedGoogle Scholar
  6. 6.
    Binenbaum Y, Na'ara S, Gil Z (2015) Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Updat 23:55–68. CrossRefPubMedGoogle Scholar
  7. 7.
    Berlin JD, Catalano P, Thomas JP, Kugler JW, Haller DG, Benson AB 3rd (2002) Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: eastern cooperative oncology group trial E2297. J Clin Oncol 20(15):3270–3275. CrossRefPubMedGoogle Scholar
  8. 8.
    Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413. CrossRefPubMedGoogle Scholar
  9. 9.
    Bastiancich C, Bastiat G, Lagarce F (2018) Gemcitabine and glioblastoma: challenges and current perspectives. Drug Discov Today 23(2):416–423. CrossRefPubMedGoogle Scholar
  10. 10.
    Heinemann V (2001) Gemcitabine: progress in the treatment of pancreatic cancer. Oncology 60(1):8–18. CrossRefPubMedGoogle Scholar
  11. 11.
    Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE (2007) Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 14(12):3629–3637. CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou BB, Bartek J (2004) Targeting the checkpoint kinases: chemosensitization versus chemoprotection. Nat Rev Cancer 4(3):216–225. CrossRefPubMedGoogle Scholar
  13. 13.
    Kerssemakers JW, Munteanu EL, Laan L, Noetzel TL, Janson ME, Dogterom M (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442(7103):709–712. CrossRefPubMedGoogle Scholar
  14. 14.
    Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10(3):194–204. CrossRefPubMedGoogle Scholar
  15. 15.
    Akhmanova A, Hoogenraad CC (2015) Microtubule minus-end-targeting proteins. Curr Biol 25(4):R162–R171. CrossRefPubMedGoogle Scholar
  16. 16.
    Perez EA (2009) Microtubule inhibitors: differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 8(8):2086–2095. CrossRefPubMedGoogle Scholar
  17. 17.
    McGrogan BT, Gilmartin B, Carney DN, McCann A (2008) Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta Rev Cancer 1785(2):96–132. CrossRefGoogle Scholar
  18. 18.
    Singh AV, Bandi M, Raje N, Richardson P, Palladino MA, Chauhan D, Anderson KC (2011) A novel vascular disrupting agent plinabulin triggers JNK-mediated apoptosis and inhibits angiogenesis in multiple myeloma cells. Blood 117(21):5692–5700. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ding Z, Cheng H, Wang S, Hou Y, Zhao J, Guan H, Li W (2017) Development of MBRI-001, a deuterium-substituted plinabulin derivative as a potent anti-cancer agent. Bioorg Med Chem Lett 27(6):1416–1419. CrossRefPubMedGoogle Scholar
  20. 20.
    Deng M, Li L, Zhao J, Yuan S, Li W (2018) Antitumor activity of the microtubule inhibitor MBRI-001 against human hepatocellular carcinoma as monotherapy or in combination with sorafenib. Cancer Chemother Pharmacol 81(5):853–862. CrossRefPubMedGoogle Scholar
  21. 21.
    Ashton JC (2015) Drug combination studies and their synergy quantification using the Chou-Talalay method–letter. Cancer Res 75(11):2400. CrossRefPubMedGoogle Scholar
  22. 22.
    Mah LJ, El-Osta A, Karagiannis TC (2010) gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24(4):679–686. CrossRefPubMedGoogle Scholar
  23. 23.
    de Sousa CL, Monteiro G (2014) Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 741:8–16. CrossRefGoogle Scholar
  24. 24.
    Zhang M, Zhuang G, Sun X, Shen Y, Wang W, Li Q, Di W (2017) TP53 mutation-mediated genomic instability induces the evolution of chemoresistance and recurrence in epithelial ovarian cancer. Diagn Pathol 12(1):16. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, Stewart G, Brown J, Lau A, Pratt G, Parry H, Taylor M, Moss P, Hillmen P, Stankovic T (2016) ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 127(5):582–595. CrossRefPubMedGoogle Scholar
  26. 26.
    Kastenhuber ER, Lowe SW (2017) Putting p53 in context. Cell 170(6):1062–1078. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M (2015) Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta Mol Cell Res 1853(1):89–100. CrossRefGoogle Scholar
  28. 28.
    Kutuk O, Letai A (2008) Alteration of the mitochondrial apoptotic pathway is key to acquired paclitaxel resistance and can be reversed by ABT-737. Cancer Res 68(19):7985–7994. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gu F, Li L, Yuan QF, Li C, Li ZH (2017) Down-regulation of survivin enhances paclitaxel-induced Hela cell apoptosis. Eur Rev Med Pharmacol Sci 21(15):3504–3509PubMedGoogle Scholar
  30. 30.
    Das GC, Holiday D, Gallardo R, Haas C (2001) Taxol-induced cell cycle arrest and apoptosis: dose-response relationship in lung cancer cells of different wild-type p53 status and under isogenic condition. Cancer Lett 165(2):147–153. CrossRefPubMedGoogle Scholar
  31. 31.
    Goldstein D, El-Maraghi RH, Hammel P, Heinemann V, Kunzmann V, Sastre J, Scheithauer W, Siena S, Tabernero J, Teixeira L, Tortora G, Van Laethem JL, Young R, Penenberg DN, Lu B, Romano A, Von Hoff DD (2015) Nab-paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J Natl Cancer Inst 107(2). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Medicine and PharmacyOcean University of ChinaQingdaoChina
  2. 2.Marine Biomedical Research Institute of QingdaoQingdaoChina
  3. 3.Innovation Center for Marine Drug Screening and EvaluationQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations