Advertisement

Emodin, a natural anthraquinone, suppresses liver cancer in vitro and in vivo by regulating VEGFR2 and miR-34a

  • Jianguo Bai
  • Jianfei Wu
  • Ruifeng TangEmail author
  • Chao Sun
  • Junwei Ji
  • Zhaolin Yin
  • Guangjun Ma
  • Wei Yang
PRECLINICAL STUDIES
  • 30 Downloads

Summary

The pharmacokinetic (PK) and potential effects of Emodin on liver cancer were systematically evaluated in this study. Both the intragastric administration (i.g.) and hypodermic injection (i.h.) of Emodin exhibited a strong absorption (absorption rate < 1 h) and elimination capacity (t1/2 ≈ 2 h). The tissue distribution of Emodin after i.h. was rapid and wide. The stability of Emodin in three species of liver microsomes wasrat >human> beagle dog. These PK data provided the basis for the subsequent animal experiments. In liver cancer patient tissues, the expression of vascular endothelial growth factor (VEGF)-induced signaling pathways, including phosphorylated VEGF receptor 2 (VEGFR2), AKT, and ERK1/2,were simultaneously elevated, but miR-34a expression was reduced and negatively correlated with SMAD2 and SMAD4. Emodin inhibited the expression of SMAD2/4 in HepG2 cells by inducing the miR-34a level. Subsequently, BALB/c nude mice received a daily subcutaneous injection of HepG2 cells with or without Emodin treatment (1 mg/kg or 10 mg/kg), and Emodin inhibited tumorigenesis and reduced the mortality rate in a dose-dependent manner. In vivo experiments showed that cell proliferation, migration, and invasion were promoted by VEGF or miR-34a signal treatment but were inhibited when combined with Emodin treatment. All these results demonstrated that Emodin inhibited tumorigenesis in liver cancer by simultaneously inhibiting the VEGFR2-AKT-ERK1/2signaling pathway and promoting a miR-34a-mediated signaling pathway.

Keywords

Emodin Liver cancer VEGFR2 miR-34a 

Notes

Author’s contributions

R.T. and J. B. designed the experiments; C.S. performed the animal experiments; J. J. performed the cell experiments in vitro; Z. Y. and W. Y. performed the western blot analysis and the luciferase assay; G. M. and J. W. performed the immunohistochemistry assay; and J. B. analyzed the data and drafted the manuscript.

Funding

This work was supported by funding from the Fourth Hospital of Hebei Medical University.

Compliance with ethical standards

Conflict of interest

All authors have declared that they have no conflicts of interest to disclose. Jianguo Bai declares that he has no conflict of interest. Jianfei Wu declares that he has no conflict of interest. Ruifeng Tang declares that he has no conflict of interest. Chao Sun declares that he has no conflict of interest. Junwei Ji declares that he has no conflict of interest. Zhaolin Yin declares that he has no conflict of interest. Guangjun Ma declares that he has no conflict of interest. Wei Yang declares that he has no conflict of interest.

Ethical approval

The Guide for the Care and Use of Laboratory Animals [National Research Council (US) Committee for the update of the Guide for the Care and Use of Laboratory Animals, 2011] was followed. All procedures in studies involving animals were performed in accordance with the ethical standards of the Animal Ethics Committee of the Fourth Hospital of Hebei Medical University (Shijiazhuang, Hebei Province, China).

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Adult Primary Liver Cancer Treatment (PDQ(R)) (2002) Patient version. PDQ Cancer Information Summaries. Bethesda (MD), InGoogle Scholar
  2. 2.
    McGuire S (2016) World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO Press, 2015. Adv Nutr 7(2):418–419.  https://doi.org/10.3945/an.116.012211 Google Scholar
  3. 3.
    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015 (2016). Lancet 388 (10053):1459–1544.  https://doi.org/10.1016/S0140-6736(16)31012-1
  4. 4.
    Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 (2015). Lancet 385 (9963):117–171.  https://doi.org/10.1016/S0140-6736(14)61682-2
  5. 5.
    Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022.  https://doi.org/10.1002/hep.24199 Google Scholar
  6. 6.
    Wang Z, Zhang G, Wu J, Jia M (2013) Adjuvant therapy for hepatocellular carcinoma: current situation and prospect. Drug Discov Ther 7(4):137–143Google Scholar
  7. 7.
    Keating GM (2017) Sorafenib: A Review in Hepatocellular Carcinoma. Target Oncol 12(2):243–253.  https://doi.org/10.1007/s11523-017-0484-7 Google Scholar
  8. 8.
    Chang LC, Huang N, Chou YJ, Lee CH, Kao FY, Huang YT (2008) Utilization patterns of Chinese medicine and Western medicine under the National Health Insurance Program in Taiwan, a population-based study from 1997 to 2003. BMC Health Serv Res 8:170.  https://doi.org/10.1186/1472-6963-8-170 Google Scholar
  9. 9.
    Lin YH, Chen KK, Chiu JH (2010) Prevalence, patterns, and costs of Chinese medicine use among prostate cancer patients: a population-based study in Taiwan. Integr. Cancer Ther 9(1):16–23.  https://doi.org/10.1177/1534735409359073 Google Scholar
  10. 10.
    Wang Z, Li J, Ji Y, An P, Zhang S, Li Z (2013) Traditional herbal medicine: a review of potential of inhibitory hepatocellular carcinoma in basic research and clinical trial. Evid-Based Compl Alt 2013:268963.  https://doi.org/10.1155/2013/268963 Google Scholar
  11. 11.
    Fuhong D, Xiang G, Haiying L, Jiangye W, Xueming G, Wenxiao C (2018) Evaluation of efficacy and safety for Brucea javanica oil emulsion in the control of the malignant pleural effusions via thoracic perfusion. BMC Cancer 18(1):411.  https://doi.org/10.1186/s12885-018-4328-3 Google Scholar
  12. 12.
    Zou Y, Guo CG, Yang ZG, Sun JH, Zhang MM, Fu CY (2016) A small interfering RNA targeting vascular endothelial growth factor efficiently inhibits growth of VX2 cells and VX2 tumor model of hepatocellular carcinoma in rabbit by transarterial embolization-mediated siRNA delivery. Drug Des Devel Ther 10:1243–1255.  https://doi.org/10.2147/DDDT.S94122 Google Scholar
  13. 13.
    Lin CC, Shieh DE (1996) The anti-inflammatory activity of Scutellaria rivularis extracts and its active components, baicalin, baicalein and wogonin. Am J Chin Med 24(1):31–36.  https://doi.org/10.1142/S0192415X96000050 Google Scholar
  14. 14.
    Lin CC, Ng LT, Hsu FF, Shieh DE, Chiang LC (2004) Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin Exp Pharmacol Physiol 31(1–2):65–69Google Scholar
  15. 15.
    Chang WC, Lin YL, Lee MJ, Shiow SJ, Wang CJ (1996) Inhibitory effect of crocetin on benzo(a)pyrene genotoxicity and neoplastic transformation in C3H10T1/2 cells. Anticancer Res 16(6B):3603–3608Google Scholar
  16. 16.
    Wang JB, Zhao HP, Zhao YL, Jin C, Liu DJ, Kong WJ, Fang F, Zhang L, Wang HJ, Xiao XH (2011) Hepatotoxicity or hepatoprotection? Pattern recognition for the paradoxical effect of the Chinese herb Rheum palmatum L. in treating rat liver injury. PLoS One 6(9):e24498.  https://doi.org/10.1371/journal.pone.0024498 Google Scholar
  17. 17.
    Wang M, Zhao R, Wang W, Mao X, Yu J (2012) Lipid regulation effects of Polygoni Multiflori Radix, its processed products and its major substances on steatosis human liver cell line L02. J Ethnopharmacol 139(1):287–293.  https://doi.org/10.1016/j.jep.2011.11.022 Google Scholar
  18. 18.
    Lee MH, Kao L, Lin CC (2011) Comparison of the antioxidant and transmembrane permeative activities of the different Polygonum cuspidatum extracts in phospholipid-based microemulsions. J Agric Food Chem 59(17):9135–9141.  https://doi.org/10.1021/jf201577f Google Scholar
  19. 19.
    Dey D, Ray R, Hazra B (2014) Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytotherapy Research 28(7):1014–1021.  https://doi.org/10.1002/ptr.5090 Google Scholar
  20. 20.
    Liu Z, Wei F, Chen LJ, Xiong HR, Liu YY, Luo F, Hou W, Xiao H, Yang ZQ (2013) In vitro and in vivo studies of the inhibitory effects of emodin isolated from Polygonum cuspidatum on Coxsakievirus B(4). Molecules 18(10):11842–11858.  https://doi.org/10.3390/molecules181011842 Google Scholar
  21. 21.
    Kim J, Lee JS, Jung J, Lim I, Lee JY, Park MJ (2015) Emodin suppresses maintenance of stemness by augmenting proteosomal degradation of epidermal growth factor receptor/epidermal growth factor receptor variant III in glioma stem cells. Stem Cells Dev 24(3):284–295.  https://doi.org/10.1089/scd.2014.0210 Google Scholar
  22. 22.
    Zhang X, Zhang R, Lv P, Yang J, Deng Y, Xu J, Zhu R, Zhang D, Yang Y (2015) Emodin up-regulates glucose metabolism, decreases lipolysis, and attenuates inflammation in vitro. J Diabetes 7(3):360–368.  https://doi.org/10.1111/1753-0407.12190 Google Scholar
  23. 23.
    Qu K, Shen NY, Xu XS, Su HB, Wei JC, Tai MH, Meng FD, Zhou L, Zhang YL, Liu C (2013) Emodin induces human T cell apoptosis in vitro by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Acta Pharmacol Sin 34(9):1217–1228.  https://doi.org/10.1038/aps.2013.58 Google Scholar
  24. 24.
    Sun YP, Liu JP (2015) Blockade of emodin on amyloid-beta 25-35-induced neurotoxicity in AbetaPP/PS1 mice and PC12 cells through activation of the class III phosphatidylinositol 3-kinase/Beclin-1/B-cell lymphoma 2 pathway. Planta Med 81(2):108–115.  https://doi.org/10.1055/s-0034-1383410 Google Scholar
  25. 25.
    Liu Y, Chen X, Qiu M, Chen W, Zeng Z, Chen Y (2014) Emodin ameliorates ethanol-induced fatty liver injury in mice. Pharmacology 94(1–2):71–77.  https://doi.org/10.1159/000363413 Google Scholar
  26. 26.
    Li WY, Chan RY, Yu PH, Chan SW (2013) Emodin induces cytotoxic effect in human breast carcinoma MCF-7 cell through modulating the expression of apoptosis-related genes. Pharm Biol 51(9):1175–1181.  https://doi.org/10.3109/13880209.2013.782322 Google Scholar
  27. 27.
    Li WY, Ng YF, Zhang H, Guo ZD, Guo DJ, Kwan YW, Leung GP, Lee SM, Yu PH, Chan SW (2014) Emodin elicits cytotoxicity in human lung adenocarcinoma A549 cells through inducing apoptosis. Inflammopharmacology 22(2):127–134.  https://doi.org/10.1007/s10787-013-0186-4 Google Scholar
  28. 28.
    Yaoxian W, Hui Y, Yunyan Z, Yanqin L, Xin G, Xiaoke W (2013) Emodin induces apoptosis of human cervical cancer hela cells via intrinsic mitochondrial and extrinsic death receptor pathway. Cancer Cell Int 13(1):71.  https://doi.org/10.1186/1475-2867-13-71 Google Scholar
  29. 29.
    Huang PH, Huang CY, Chen MC, Lee YT, Yue CH, Wang HY, Lin H (2013) Emodin and aloe-Emodin suppress breast Cancer cell proliferation through ER alpha inhibition. Evid-Based Compl Alt 2013:376123.  https://doi.org/10.1155/2013/376123 Google Scholar
  30. 30.
    Xie MJ, Ma YH, Miao L, Wang Y, Wang HZ, Xing YY, Xi T, Lu YY (2014) Emodin-provoked oxidative stress induces apoptosis in human colon cancer HCT116 cells through a p53-mitochondrial apoptotic pathway. Asian Pac J Cancer P 15(13):5201–5205Google Scholar
  31. 31.
    Kirsch M, Schackert G, Black PM (2004) Metastasis and angiogenesis. Cancer Treat Res 117:285–304Google Scholar
  32. 32.
    Geiger TR, Peeper DS (2009) Metastasis mechanisms. Biochim Biophys Acta 1796(2):293–308.  https://doi.org/10.1016/j.bbcan.2009.07.006 Google Scholar
  33. 33.
    Kudo M (2006) Early detection and characterization of hepatocellular carcinoma: value of imaging multistep human hepatocarcinogenesis. Intervirology 49(1–2):64–69.  https://doi.org/10.1159/000087265 Google Scholar
  34. 34.
    Torimura T, Sata M, Ueno T, Kin M, Tsuji R, Suzaku K, Hashimoto O, Sugawara H, Tanikawa K (1998) Increased expression of vascular endothelial growth factor is associated with tumor progression in hepatocellular carcinoma. Hum Pathol 29(9):986–991Google Scholar
  35. 35.
    Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, Zarba JJ, Chen M, McCann L, Pandite L, Roychowdhury DF, Hawkins RE (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol Off J Am Soc Clin Oncol 28(6):1061–1068.  https://doi.org/10.1200/JCO.2009.23.9764 Google Scholar
  36. 36.
    Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz HJ, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, Laurent D (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312.  https://doi.org/10.1016/S0140-6736(12)61900-X Google Scholar
  37. 37.
    Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355.  https://doi.org/10.1038/nature02871 Google Scholar
  38. 38.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297Google Scholar
  39. 39.
    Bartel DP (2018) Metazoan MicroRNAs. Cell 173(1):20–51.  https://doi.org/10.1016/j.cell.2018.03.006 Google Scholar
  40. 40.
    Mraz M, Pospisilova S (2012) MicroRNAs in chronic lymphocytic leukemia: from causality to associations and back. Expert Rev Hematol 5(6):579–581.  https://doi.org/10.1586/ehm.12.54 Google Scholar
  41. 41.
    Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299(5612):1540.  https://doi.org/10.1126/science.1080372 Google Scholar
  42. 42.
    Mraz M, Malinova K, Kotaskova J, Pavlova S, Tichy B, Malcikova J, Stano Kozubik K, Smardova J, Brychtova Y, Doubek M, Trbusek M, Mayer J, Pospisilova S (2009) miR-34a, miR-29c and miR-17-5p are downregulated in CLL patients with TP53 abnormalities. Leukemia 23(6):1159–1163.  https://doi.org/10.1038/leu.2008.377 Google Scholar
  43. 43.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134.  https://doi.org/10.1038/nature05939 Google Scholar
  44. 44.
    Bader AG (2012) miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 3:120.  https://doi.org/10.3389/fgene.2012.00120 Google Scholar
  45. 45.
    Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D (2014) Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 13(10):2352–2360.  https://doi.org/10.1158/1535-7163.MCT-14-0209 Google Scholar
  46. 46.
    Kelnar K, Peltier HJ, Leatherbury N, Stoudemire J, Bader AG (2014) Quantification of therapeutic miRNA mimics in whole blood from nonhuman primates. Anal Chem 86(3):1534–1542.  https://doi.org/10.1021/ac403044t Google Scholar
  47. 47.
    Kwak HJ, Park MJ, Park CM, Moon SI, Yoo DH, Lee HC, Lee SH, Kim MS, Lee HW, Shin WS, Park IC, Rhee CH, Hong SI (2006) Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int J Cancer 118(11):2711–2720.  https://doi.org/10.1002/ijc.21641 Google Scholar
  48. 48.
    Lu Y, Zhang J, Qian J (2008) The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biother Radiopharm 23(2):222–228.  https://doi.org/10.1089/cbr.2007.0425 Google Scholar
  49. 49.
    Wang Z, Wang N, Han S, Wang D, Mo S, Yu L, Huang H, Tsui K, Shen J, Chen J (2013) Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS One 8(7):e68566.  https://doi.org/10.1371/journal.pone.0068566 Google Scholar
  50. 50.
    Cha TL, Chuang MJ, Tang SH, Wu ST, Sun KH, Chen TT, Sun GH, Chang SY, Yu CP, Ho JY, Liu SY, Huang SM, Yu DS (2015) Emodin modulates epigenetic modifications and suppresses bladder carcinoma cell growth. Mol Carcinog 54(3):167–177.  https://doi.org/10.1002/mc.22084 Google Scholar
  51. 51.
    Jia X, Yu F, Wang J, Iwanowycz S, Saaoud F, Wang Y, Hu J, Wang Q, Fan D (2014) Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Res Treat 148(2):291–302.  https://doi.org/10.1007/s10549-014-3164-7 Google Scholar
  52. 52.
    Jelassi B, Anchelin M, Chamouton J, Cayuela ML, Clarysse L, Li J, Gore J, Jiang LH, Roger S (2013) Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors. Carcinogenesis 34(7):1487–1496.  https://doi.org/10.1093/carcin/bgt099 Google Scholar
  53. 53.
    Zhang X, Chen Y, Zhang T, Zhang Y (2015) Inhibitory effect of emodin on human hepatoma cell line SMMC-7721 and its mechanism. Afr Health Sci 15(1):97–100.  https://doi.org/10.4314/ahs.v15i1.13 Google Scholar
  54. 54.
    Ma J, Yang J, Wang C, Zhang N, Dong Y, Wang Y, Lin X (2014) Emodin augments cisplatin cytotoxicity in platinum-resistant ovarian cancer cells via ROS-dependent MRP1 downregulation. Biomed Res Int 2014:107671.  https://doi.org/10.1155/2014/107671 Google Scholar
  55. 55.
    Li XX, Dong Y, Wang W, Wang HL, Chen YY, Shi GY, Yi J, Wang J (2013) Emodin as an effective agent in targeting cancer stem-like side population cells of gallbladder carcinoma. Stem Cells Dev 22(4):554–566.  https://doi.org/10.1089/scd.2011.0709 Google Scholar
  56. 56.
    Subramaniam A, Loo SY, Rajendran P, Manu KA, Perumal E, Li F, Shanmugam MK, Siveen KS, Park JI, Ahn KS, Hui KM, Kumar AP, Sethi G (2013) An anthraquinone derivative, emodin sensitizes hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival proteins. Apoptosis 18(10):1175–1187.  https://doi.org/10.1007/s10495-013-0851-5 Google Scholar
  57. 57.
    Meijerink MR, Puijk RS, van Tilborg A, Henningsen KH, Fernandez LG, Neyt M, Heymans J, Frankema JS, de Jong KP, Richel DJ, Prevoo W, Vlayen J (2018) Radiofrequency and microwave ablation compared to systemic chemotherapy and to partial hepatectomy in the treatment of colorectal liver metastases: a systematic review and meta-analysis. Cardiovasc Intervent Radiol 41(8):1189–1204.  https://doi.org/10.1007/s00270-018-1959-3 Google Scholar
  58. 58.
    de Lope CR, Tremosini S, Forner A, Reig M, Bruix J (2012) Management of HCC. J Hepatol 56(Suppl 1):S75–S87.  https://doi.org/10.1016/S0168-8278(12)60009-9 Google Scholar
  59. 59.
    Shiina S, Sato K, Tateishi R, Shimizu M, Ohama H, Hatanaka T, Takawa M, Nagamatsu H, Imai Y (2018) Percutaneous ablation for hepatocellular carcinoma: comparison of various ablation techniques and surgery. Can J Gastroenterol 2018:4756147.  https://doi.org/10.1155/2018/4756147 Google Scholar
  60. 60.
    Xia H, Hui KM (2017) Emergence of aspirin as a promising chemopreventive and chemotherapeutic agent for liver cancer. Cell Death Dis 8(10):e3112.  https://doi.org/10.1038/cddis.2017.513 Google Scholar
  61. 61.
    Miura H, Miyazaki T, Kuroda M, Oka T, Machinami R, Kodama T, Shibuya M, Makuuchi M, Yazaki Y, Ohnishi S (1997) Increased expression of vascular endothelial growth factor in human hepatocellular carcinoma. J Hepatol 27(5):854–861Google Scholar
  62. 62.
    Yamaguchi R, Yano H, Iemura A, Ogasawara S, Haramaki M, Kojiro M (1998) Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 28(1):68–77.  https://doi.org/10.1002/hep.510280111 Google Scholar
  63. 63.
    Wang J, Dan G, Zhao J, Ding Y, Ye F, Sun H, Jiang F, Cheng J, Yuan F, Zou Z (2015) The predictive effect of overexpressed miR-34a on good survival of cancer patients: a systematic review and meta-analysis. Oncotargets Ther 8:2709–2719.  https://doi.org/10.2147/OTT.S84043 Google Scholar
  64. 64.
    Hiyoshi Y, Schetter AJ, Okayama H, Inamura K, Anami K, Nguyen GH, Horikawa I, Hawkes JE, Bowman ED, Leung SY, Harris CC (2015) Increased microRNA-34b and -34c predominantly expressed in stromal tissues is associated with poor prognosis in human colon cancer. PLoS One 10(4):e0124899.  https://doi.org/10.1371/journal.pone.0124899 Google Scholar
  65. 65.
    Jamieson NB, Morran DC, Morton JP, Ali A, Dickson EJ, Carter CR, Sansom OJ, Evans TR, McKay CJ, Oien KA (2012) MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clinical cancer research : an official journal of the American association for. Cancer Res 18(2):534–545.  https://doi.org/10.1158/1078-0432.CCR-11-0679 Google Scholar
  66. 66.
    Shin J, Xie D, Zhong XP (2013) MicroRNA-34a enhances T cell activation by targeting diacylglycerol kinase zeta. PLoS One 8(10):e77983.  https://doi.org/10.1371/journal.pone.0077983 Google Scholar
  67. 67.
    Wang X, Li J, Dong K, Lin F, Long M, Ouyang Y, Wei J, Chen X, Weng Y, He T, Zhang H (2015) Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 27(3):443–452.  https://doi.org/10.1016/j.cellsig.2014.12.003 Google Scholar
  68. 68.
    Cortez MA, Valdecanas D, Niknam S, Peltier HJ, Diao L, Giri U, Komaki R, Calin GA, Gomez DR, Chang JY, Heymach JV, Bader AG, Welsh JW (2015) In vivo delivery of miR-34a sensitizes lung tumors to radiation through RAD51 regulation. Mol Ther-Nucl Acids 4:e270.  https://doi.org/10.1038/mtna.2015.47 Google Scholar
  69. 69.
    Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J (2007) High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11(2):147–160.  https://doi.org/10.1016/j.ccr.2006.11.023 Google Scholar
  70. 70.
    Oft M, Akhurst RJ, Balmain A (2002) Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 4(7):487–494.  https://doi.org/10.1038/ncb807 Google Scholar
  71. 71.
    Shinto O, Yashiro M, Toyokawa T, Nishii T, Kaizaki R, Matsuzaki T, Noda S, Kubo N, Tanaka H, Doi Y, Ohira M, Muguruma K, Sawada T, Hirakawa K (2010) Phosphorylated smad2 in advanced stage gastric carcinoma. BMC Cancer 10:652.  https://doi.org/10.1186/1471-2407-10-652 Google Scholar
  72. 72.
    Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW (2016) PDL1 regulation by p53 via miR-34. J Natl Cancer Inst 108(1).  https://doi.org/10.1093/jnci/djv303
  73. 73.
    Craig VJ, Tzankov A, Flori M, Schmid CA, Bader AG, Muller A (2012) Systemic microRNA-34a delivery induces apoptosis and abrogates growth of diffuse large B-cell lymphoma in vivo. Leukemia 26(11):2421–2424.  https://doi.org/10.1038/leu.2012.110 Google Scholar
  74. 74.
    Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70(14):5923–5930.  https://doi.org/10.1158/0008-5472.CAN-10-0655 Google Scholar
  75. 75.
    Zhao J, Kelnar K, Bader AG (2014) In-depth analysis shows synergy between erlotinib and miR-34a. PLoS One 9(2):e89105.  https://doi.org/10.1371/journal.pone.0089105 Google Scholar
  76. 76.
    Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-met expression in human hepatocellular carcinoma cells. Cancer Lett 275(1):44–53.  https://doi.org/10.1016/j.canlet.2008.09.035 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jianguo Bai
    • 1
  • Jianfei Wu
    • 2
  • Ruifeng Tang
    • 1
    Email author
  • Chao Sun
    • 1
  • Junwei Ji
    • 3
  • Zhaolin Yin
    • 4
  • Guangjun Ma
    • 1
  • Wei Yang
    • 1
  1. 1.Department of Hepatobiliary Surgerythe Fourth Hospital of Hebei Medical UniversityShijiazhuangPeople’s Republic of China
  2. 2.Department of Hepatobiliary Surgerythe Affiliated Hospital of Hebei UniversityBaodingPeople’s Republic of China
  3. 3.Department of Emergencythe Fourth Hospital of Hebei Medical UniversityShijiazhuangPeople’s Republic of China
  4. 4.Department of ultrasoundthe Fourth Hospital of Hebei Medical UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations