Advertisement

Midkine silencing enhances the anti–prostate cancer stem cell activity of the flavone apigenin: cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB

  • Suat ErdoganEmail author
  • Kader Turkekul
  • Ilker Dibirdik
  • Zeynep B. Doganlar
  • Oguzhan Doganlar
  • Ayhan Bilir
PRECLINICAL STUDIES

Summary

Prostate cancer (PCa) is the most common cancer in men worldwide. Midkine (MK) is overexpressed in PCa, as well as in tumor-initiating cells termed cancer stem cells (CSCs). Apigenin is a dietary flavone with considerable anti-tumor activities. In this study, we explored the possible therapeutic use of MK silencing, apigenin treatment, and a combination of both on human PCa and prostate cancer stem cells (PCSCs). CD44+CD133+ PC3 and CD44+ LNCaP CSCs were isolated from their parent cell lines. Both MK knockdown and apigenin treatment resulted in loss of cell viability in PCSCs, and these effects were significantly elevated when apigenin was applied with MK silencing. Combined treatment of CD44+CD133+ PC3 cells with apigenin and MK siRNA was also more effective in inducing apoptotic and non-apoptotic cell death when compared with individual applications. Treatment of CD44+ LNCaP cells with apigenin significantly decreased viability, although the combination treatment did not markedly alter the individual therapy. Molecular events underlying cell cycle arrest and inhibition of the survival, proliferation, and migration of CD44+CD133+ PC3 cells were found to be associated with upregulated p21, p27, Bax, Bid, caspase-3, and caspase-8 expression, as well as downregulated p-p38, p-ERK, NF-κB, and PARP. In addition, the combination of apigenin treatment and MK silencing showed better outcomes on the anticancer efficacy of docetaxel in CD44+CD133+ PC3 cells. In conclusion, MK-regulated events are different between PCSCs, and when combined with apigenin plus MK silencing, docetaxel treatment may be a valuable approach for the eradication of PCSCs.

Keywords

Apigenin Midkine Prostate cancer CD44 CD133 Cancer stem cell 

Notes

Acknowledgments

The authors would like to thank to Dr. Gulperi Oktem for the useful discussions and help. We thank to Rıza Serttaş and Talha Baykul for their technical assistance.

Funding

The work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK grant number: 115S356).

Compliance with ethical standards

Conflict of interest

Suat Erdogan declares that he has no conflict of interest. Kader Turkekul declares that she has no conflict of interest. Ilker Dibirdik declares that he has no conflict of interest. Zeynep B. Doganlar declares that she has no conflict of interest. Oguzhan Doganlar declares that he has no conflict of interest. Ayhan Bilir declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Supplementary material

10637_2019_774_MOESM1_ESM.pdf (218 kb)
ESM 1 (PDF 217 kb)

References

  1. 1.
    Attard G, Parker C, Eeles RA, Schroder F, Tomlins SA, Tannock I, Drake CG, de Bono JS (2016) Prostate cancer. Lancet 387(10013):70–82.  https://doi.org/10.1016/S0140-6736(14)61947-4 CrossRefGoogle Scholar
  2. 2.
    Global Burden of Disease Cancer C, Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, Alsharif U, Alvis-Guzman N, Amini E, Anderson BO, Aremu O, Artaman A, Asgedom SW, Assadi R, Atey TM, Avila-Burgos L, Awasthi A, Ba Saleem HO, Barac A, Bennett JR, Bensenor IM, Bhakta N, Brenner H, Cahuana-Hurtado L, Castaneda-Orjuela CA, Catala-Lopez F, Choi JJ, Christopher DJ, Chung SC, Curado MP, Dandona L, Dandona R, das Neves J, Dey S, Dharmaratne SD, Doku DT, Driscoll TR, Dubey M, Ebrahimi H, Edessa D, El-Khatib Z, Endries AY, Fischer F, Force LM, Foreman KJ, Gebrehiwot SW, Gopalani SV, Grosso G, Gupta R, Gyawali B, Hamadeh RR, Hamidi S, Harvey J, Hassen HY, Hay RJ, Hay SI, Heibati B, Hiluf MK, Horita N, Hosgood HD, Ilesanmi OS, Innos K, Islami F, Jakovljevic MB, Johnson SC, Jonas JB, Kasaeian A, Kassa TD, Khader YS, Khan EA, Khan G, Khang YH, Khosravi MH, Khubchandani J, Kopec JA, Kumar GA, Kutz M, Lad DP, Lafranconi A, Lan Q, Legesse Y, Leigh J, Linn S, Lunevicius R, Majeed A, Malekzadeh R, Malta DC, Mantovani LG, BJ MM, Meier T, Melaku YA, Melku M, Memiah P, Mendoza W, Meretoja TJ, Mezgebe HB, Miller TR, Mohammed S, Mokdad AH, Moosazadeh M, Moraga P, Mousavi SM, Nangia V, Nguyen CT, Nong VM, Ogbo FA, Olagunju AT, Pa M, Park EK, Patel T, Pereira DM, Pishgar F, Postma MJ, Pourmalek F, Qorbani M, Rafay A, Rawaf S, Rawaf DL, Roshandel G, Safiri S, Salimzadeh H, Sanabria JR, Santric Milicevic MM, Sartorius B, Satpathy M, Sepanlou SG, Shackelford KA, Shaikh MA, Sharif-Alhoseini M, She J, Shin MJ, Shiue I, Shrime MG, Sinke AH, Sisay M, Sligar A, Sufiyan MB, Sykes BL, Tabares-Seisdedos R, Tessema GA, Topor-Madry R, Tran TT, Tran BX, Ukwaja KN, Vlassov VV, Vollset SE, Weiderpass E, Williams HC, Yimer NB, Yonemoto N, Younis MZ, CJL M, Naghavi M (2018) Global, regional, and National Cancer Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 Cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol 4:1553–1568.  https://doi.org/10.1001/jamaoncol.2018.2706 CrossRefGoogle Scholar
  3. 3.
    Green SM, Mostaghel EA, Nelson PS (2012) Androgen action and metabolism in prostate cancer. Mol Cell Endocrinol 360(1–2):3–13.  https://doi.org/10.1016/j.mce.2011.09.046 CrossRefGoogle Scholar
  4. 4.
    Antonarakis ES, Eisenberger MA (2011) Expanding treatment options for metastatic prostate cancer. N Engl J Med 364(21):2055–2058.  https://doi.org/10.1056/NEJMe1102758 CrossRefGoogle Scholar
  5. 5.
    Yu Z, Pestell TG, Lisanti MP, Pestell RG (2012) Cancer stem cells. Int J Biochem Cell Biol 44(12):2144–2151.  https://doi.org/10.1016/j.biocel.2012.08.022 CrossRefGoogle Scholar
  6. 6.
    Harris KS, Kerr BA (2017) Prostate Cancer stem cell markers drive progression, therapeutic resistance, and bone metastasis. Stem Cells Int 2017:8629234.  https://doi.org/10.1155/2017/8629234 CrossRefGoogle Scholar
  7. 7.
    Ojo D, Lin X, Wong N, Gu Y, Tang D (2015) Prostate Cancer stem-like cells contribute to the development of castration-resistant prostate Cancer. Cancers (Basel) 7(4):2290–2308.  https://doi.org/10.3390/cancers7040890 CrossRefGoogle Scholar
  8. 8.
    Muramatsu T (2012) General information on Midkine. In: Ergüven MM, T.; Bilir, A. (ed) Midkine: from embryogenesis to pathogenesis and therapy. Springer science+business media Dordrecht, New York, pp 3-13.  https://doi.org/10.1007/978-94-007-4234-5_1
  9. 9.
    You Z (2012) Midkine in prostate Cancer. Midkine: from embryogenesis to pathogenesis and therapy. Springer, New YorkGoogle Scholar
  10. 10.
    Takei Y, Kadomatsu K (2012) Midkine and Chemoresistance in cancers. Midkine: from embryogenesis to pathogenesis and therapy. Springer, New YorkGoogle Scholar
  11. 11.
    Madunic J, Madunic IV, Gajski G, Popic J, Garaj-Vrhovac V (2018) Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Lett 413:11–22.  https://doi.org/10.1016/j.canlet.2017.10.041 CrossRefGoogle Scholar
  12. 12.
    Ozbey U, Attar R, Romero MA, Alhewairini SS, Afshar B, Sabitaliyevich UY, Hanna-Wakim L, Ozcelik B, Farooqi AA (2018) Apigenin as an effective anticancer natural product: spotlight on TRAIL, WNT/beta-catenin, JAK-STAT pathways, and microRNAs. J Cell Biochem 120:1060–1067.  https://doi.org/10.1002/jcb.27575 CrossRefGoogle Scholar
  13. 13.
    Yan X, Qi M, Li P, Zhan Y, Shao H (2017) Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci 7:50.  https://doi.org/10.1186/s13578-017-0179-x
  14. 14.
    Erdogan S, Doganlar O, Doganlar ZB, Serttas R, Turkekul K, Dibirdik I, Bilir A (2016) The flavonoid apigenin reduces prostate cancer CD44(+) stem cell survival and migration through PI3K/Akt/NF-kappaB signaling. Life Sci 162:77–86.  https://doi.org/10.1016/j.lfs.2016.08.019 CrossRefGoogle Scholar
  15. 15.
    Erdogan S, Turkekul K, Serttas R, Erdogan Z (2017) The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother 88:210–217.  https://doi.org/10.1016/j.biopha.2017.01.056 CrossRefGoogle Scholar
  16. 16.
    Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, MacLennan GT, Gupta S (2015) Apigenin blocks IKKalpha activation and suppresses prostate cancer progression. Oncotarget 6(31):31216–31232.  https://doi.org/10.18632/oncotarget.5157 CrossRefGoogle Scholar
  17. 17.
    Zhu Y, Wu J, Li S, Wang X, Liang Z, Xu X, Xu X, Hu Z, Lin Y, Chen H, Qin J, Mao Q, Xie L (2015) Apigenin inhibits migration and invasion via modulation of epithelial mesenchymal transition in prostate cancer. Mol Med Rep 11(2):1004–1008.  https://doi.org/10.3892/mmr.2014.2801 CrossRefGoogle Scholar
  18. 18.
    Kim B, Jung N, Lee S, Sohng JK, Jung HJ (2016) Apigenin inhibits Cancer stem cell-like phenotypes in human glioblastoma cells via suppression of c-met signaling. Phytother Res 30(11):1833–1840.  https://doi.org/10.1002/ptr.5689 CrossRefGoogle Scholar
  19. 19.
    Liu J, Cao XC, Xiao Q, Quan MF (2015) Apigenin inhibits HeLa sphere-forming cells through inactivation of casein kinase 2alpha. Mol Med Rep 11(1):665–669.  https://doi.org/10.3892/mmr.2014.2720 CrossRefGoogle Scholar
  20. 20.
    Ketkaew Y, Osathanon T, Pavasant P, Sooampon S (2017) Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Arch Oral Biol 74:69–74.  https://doi.org/10.1016/j.archoralbio.2016.11.010 CrossRefGoogle Scholar
  21. 21.
    Wan Y, Fei X, Wang Z, Jiang D, Chen H, Wang M, Zhou S (2017) miR-423-5p knockdown enhances the sensitivity of glioma stem cells to apigenin through the mitochondrial pathway. Tumour Biol 39(4):1010428317695526.  https://doi.org/10.1177/1010428317695526 CrossRefGoogle Scholar
  22. 22.
    Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Sakai T (2006) The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther 5(4):945–951.  https://doi.org/10.1158/1535-7163.MCT-05-0431 CrossRefGoogle Scholar
  23. 23.
    Cheong JW, Min YH, Eom JI, Kim SJ, Jeung HK, Kim JS (2010) Inhibition of CK2{alpha} and PI3K/Akt synergistically induces apoptosis of CD34+CD38- leukaemia cells while sparing haematopoietic stem cells. Anticancer Res 30(11):4625–4634Google Scholar
  24. 24.
    Erdogan S, Doganlar ZB, Doganlar O, Turkekul K, Serttas R (2017) Inhibition of Midkine suppresses prostate Cancer CD133(+) stem cell growth and migration. Am J Med Sci 354(3):299–309.  https://doi.org/10.1016/j.amjms.2017.04.019 CrossRefGoogle Scholar
  25. 25.
    Erdogan S, Turkekul K, Dibirdik I, Doganlar O, Doganlar ZB, Bilir A, Oktem G (2018) Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed Pharmacother 107:793–805.  https://doi.org/10.1016/j.biopha.2018.08.061
  26. 26.
    Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL (2008) CD44(+)CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Brit J Cancer 98(4):756–765.  https://doi.org/10.1038/sj.bjc.6604242 CrossRefGoogle Scholar
  27. 27.
    Erdogan S, Doganlar O, Doganlar ZB, Turkekul K (2018) Naringin sensitizes human prostate cancer cells to paclitaxel therapy. Prostate Int 6(4):126–135.  https://doi.org/10.1016/j.prnil.2017.11.001 CrossRefGoogle Scholar
  28. 28.
    Zhang D, Tang DG, Rycaj K (2018) Cancer stem cells: regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 52(Pt 2):94–106.  https://doi.org/10.1016/j.semcancer.2018.05.001 CrossRefGoogle Scholar
  29. 29.
    Tai S, Sun Y, Squires JM, Zhang H, Oh WK, Liang CZ, Huang JT (2011) PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 71(15):1668–1679.  https://doi.org/10.1002/pros.21383 CrossRefGoogle Scholar
  30. 30.
    Pellacani D, Packer RJ, Frame FM, Oldridge EE, Berry PA, Labarthe MC, Stower MJ, Simms MS, Collins AT, Maitland NJ (2011) Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer. Mol Cancer 10:94.  https://doi.org/10.1186/1476-4598-10-94 CrossRefGoogle Scholar
  31. 31.
    Liu X, Chen X, Rycaj K, Chao HP, Deng Q, Jeter C, Liu C, Honorio S, Li H, Davis T, Suraneni M, Laffin B, Qin J, Li Q, Yang T, Whitney P, Shen J, Huang J, Tang DG (2015) Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget 6(27):23959–23986.  https://doi.org/10.18632/oncotarget.4260 Google Scholar
  32. 32.
    Wang L, Huang X, Zheng X, Wang X, Li S, Zhang L, Yang Z, Xia Z (2013) Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy. Int J Biol Sci 9(5):472–479.  https://doi.org/10.7150/ijbs.5855 CrossRefGoogle Scholar
  33. 33.
    Sharifi N, Hurt EM, Farrar WL (2008) Androgen receptor expression in prostate cancer stem cells: is there a conundrum? Cancer Chemother Pharmacol 62(5):921–923.  https://doi.org/10.1007/s00280-007-0659-5 CrossRefGoogle Scholar
  34. 34.
    Sueyoshi T, Jono H, Shinriki S, Ota K, Ota T, Tasaki M, Atsuyama E, Yakushiji T, Ueda M, Obayashi K, Mizuta H, Ando Y (2012) Therapeutic approaches targeting midkine suppress tumor growth and lung metastasis in osteosarcoma. Cancer Lett 316(1):23–30.  https://doi.org/10.1016/j.canlet.2011.10.013 CrossRefGoogle Scholar
  35. 35.
    Seo YJ, Kim BS, Chun SY, Park YK, Kang KS, Kwon TG (2011) Apoptotic effects of genistein, biochanin-a and apigenin on LNCaP and PC-3 cells by p21 through transcriptional inhibition of polo-like kinase-1. J Korean Med Sci 26(11):1489–1494.  https://doi.org/10.3346/jkms.2011.26.11.1489 CrossRefGoogle Scholar
  36. 36.
    Vijayaraghavan S, Moulder S, Keyomarsi K, Layman RM (2018) Inhibiting CDK in Cancer therapy: current evidence and future directions. Target Oncol 13(1):21–38.  https://doi.org/10.1007/s11523-017-0541-2 CrossRefGoogle Scholar
  37. 37.
    Abukhdeir AM, Park BH (2008) P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10:e19.  https://doi.org/10.1017/S1462399408000744 CrossRefGoogle Scholar
  38. 38.
    Roy S, Singh RP, Agarwal C, Siriwardana S, Sclafani R, Agarwal R (2008) Downregulation of both p21/Cip1 and p27/Kip1 produces a more aggressive prostate cancer phenotype. Cell Cycle 7(12):1828–1835.  https://doi.org/10.4161/Cc.7.12.6024 CrossRefGoogle Scholar
  39. 39.
    Alvarez S, Blanco A, Fresno M, Munoz-Fernandez MA (2011) TNF-alpha contributes to caspase-3 independent apoptosis in neuroblastoma cells: role of NFAT. PLoS One 6(1):e16100.  https://doi.org/10.1371/journal.pone.0016100 CrossRefGoogle Scholar
  40. 40.
    Chen X, Duan N, Zhang C, Zhang W (2016) Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies. J Cancer 7(3):314–323.  https://doi.org/10.7150/jca.13332 CrossRefGoogle Scholar
  41. 41.
    Perlman H, Zhang X, Chen MW, Walsh K, Buttyan R (1999) An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ 6(1):48–54.  https://doi.org/10.1038/sj.cdd.4400453 CrossRefGoogle Scholar
  42. 42.
    Shiraishi H, Okamoto H, Yoshimura A, Yoshida H (2006) ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 119(Pt 19):3958–3966.  https://doi.org/10.1242/jcs.03160 CrossRefGoogle Scholar
  43. 43.
    Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint Jean L, Case TC, Ellwood-Yen K, Sawyers CL, Bhowmick NA, Blackwell TS, Yull FE, Matusik RJ (2008) The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 68(16):6762–6769.  https://doi.org/10.1158/0008-5472.CAN-08-0107 CrossRefGoogle Scholar
  44. 44.
    Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, Sun Y, Ouyang X, Gerald WL, Cordon-Cardo C, Abate-Shen C (2008) Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest 118(9):3051–3064.  https://doi.org/10.1172/JCI34764 Google Scholar
  45. 45.
    Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813(9):1619–1633.  https://doi.org/10.1016/j.bbamcr.2010.12.012 CrossRefGoogle Scholar
  46. 46.
    Bai D, Ueno L, Vogt PK (2009) Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 125(12):2863–2870.  https://doi.org/10.1002/ijc.24748 CrossRefGoogle Scholar
  47. 47.
    Xu Y, Qu X, Zhang X, Luo Y, Zhang Y, Luo Y, Hou K, Liu Y (2009) Midkine positively regulates the proliferation of human gastric cancer cells. Cancer Lett 279(2):137–144.  https://doi.org/10.1016/j.canlet.2009.01.024 CrossRefGoogle Scholar
  48. 48.
    Kwon O, Kim KA, Kim SO, Ha R, Oh WK, Kim MS, Kim HS, Kim GD, Kim JW, Jung M, Kim CH, Ahn JS, Kim BY (2006) NF-kappaB inhibition increases chemosensitivity to trichostatin A-induced cell death of Ki-Ras-transformed human prostate epithelial cells. Carcinogenesis 27(11):2258–2268.  https://doi.org/10.1093/carcin/bgl097 CrossRefGoogle Scholar
  49. 49.
    Shukla S, Shankar E, Fu P, MacLennan GT, Gupta S (2015) Suppression of NF-kappaB and NF-kappaB-regulated gene expression by Apigenin through IkappaBalpha and IKK pathway in TRAMP mice. PLoS One 10(9):e0138710.  https://doi.org/10.1371/journal.pone.0138710 CrossRefGoogle Scholar
  50. 50.
    Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, Gao J, Boothman DA (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28CrossRefGoogle Scholar
  51. 51.
    Morisugi T, Tanaka Y, Kawakami T, Kirita T (2010) Mechanical stretch enhances NF-kappaB-dependent gene expression and poly(ADP-ribose) synthesis in synovial cells. J Biochem 147(5):633–644.  https://doi.org/10.1093/jb/mvp210 CrossRefGoogle Scholar
  52. 52.
    Qi M, Ikematsu S, Maeda N, Ichihara-Tanaka K, Sakuma S, Noda M, Muramatsu T, Kadomatsu K (2001) Haptotactic migration induced by midkine. Involvement of protein-tyrosine phosphatase zeta. Mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. J Biol Chem 276(19):15868–15875CrossRefGoogle Scholar
  53. 53.
    Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget 8(23):38022–38043.  https://doi.org/10.18632/oncotarget.16723 CrossRefGoogle Scholar
  54. 54.
    Tosco L, Briganti A, D'Amico AV, Eastham J, Eisenberger M, Gleave M, Haustermans K, Logothetis CJ, Saad F, Sweeney C, Taplin ME, Fizazi K (2018) Systematic review of systemic therapies and therapeutic combinations with local treatments for high-risk localized prostate Cancer. Eur Urol 75:44–60.  https://doi.org/10.1016/j.eururo.2018.07.027 CrossRefGoogle Scholar
  55. 55.
    Hoensch H, Groh B, Edler L, Kirch W (2008) Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol 14(14):2187–2193.  https://doi.org/10.3748/wjg.14.2187 CrossRefGoogle Scholar
  56. 56.
    Chen M, Wang X, Zha D, Cai F, Zhang W, He Y, Huang Q, Zhuang H, Hua ZC (2016) Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep 6:35468.  https://doi.org/10.1038/srep35468 CrossRefGoogle Scholar
  57. 57.
    Oishi M, Iizumi Y, Taniguchi T, Goi W, Miki T, Sakai T (2013) Apigenin sensitizes prostate cancer cells to Apo2L/TRAIL by targeting adenine nucleotide translocase-2. PLoS One 8(2):e55922.  https://doi.org/10.1371/journal.pone.0055922 CrossRefGoogle Scholar
  58. 58.
    Suh YA, Jo SY, Lee HY, Lee C (2015) Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int J Oncol 46(3):1405–1411.  https://doi.org/10.3892/ijo.2014.2808 CrossRefGoogle Scholar
  59. 59.
    Hour TC, Chung SD, Kang WY, Lin YC, Chuang SJ, Huang AM, Wu WJ, Huang SP, Huang CY, Pu YS (2015) EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Arch Toxicol 89(4):591–605.  https://doi.org/10.1007/s00204-014-1275-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Biology, School of MedicineTrakya UniversityEdirneTurkey
  2. 2.Department of Biochemistry, School of MedicineTrakya University22030 EdirneTurkey
  3. 3.Department of Histology and Embryology, School of MedicineIstanbul Aydin UniversityIstanbulTurkey

Personalised recommendations