Advertisement

Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma

  • Chongchong Wang
  • Juehua Jing
  • Li Cheng
REVIEW
  • 24 Downloads

Summary

Non-coding RNAs (ncRNAs) have been found to play essential roles in various physiological and pathological processes. The involvement of ncRNAs in the development of osteosarcoma (OS) has been explored in recent years. In this review, we summarize the functions and mechanisms of microRNA, lncRNA and circRNA in the initiation and progression of OS. We specifically focused on their potential application in the diagnosis, prognosis and therapy of OS. This summary of current knowledge on the involvement of ncRNAs in OS will not only aid comprehension of the complex processes of OS initiation and progression but also contribute to the exploration of ideal diagnostic biomarkers and therapeutic targets for OS patients.

Keywords

Osteosarcoma microRNAs Long non-coding RNAs circRNAs 

Notes

Funding

This work is supported by the National Natural Science Foundation of China (81702656) and the Natural Science Foundation of Anhui Province (1708085QH215) to Li Cheng.

Compliance with ethical standards

Conflict of interest

Chongchong Wang declares that she has no conflict of interest. Juehua Jing declares that he has no conflict of interest. Li Cheng declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

References

  1. 1.
    Isakoff MS, Bielack SS, Meltzer P, Gorlick R (2015) Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol 33(27):3029–3035.  https://doi.org/10.1200/jco.2014.59.4895 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL, Lee DF (2017) Osteosarcoma: molecular pathogenesis and iPSC modeling. Trends Mol Med 23(8):737–755.  https://doi.org/10.1016/j.molmed.2017.06.004
  3. 3.
    Omer N, Le Deley MC, Piperno-Neumann S, Marec-Berard P, Italiano A, Corradini N, Bellera C, Brugières L, Gaspar N (2017) Phase-II trials in osteosarcoma recurrences: a systematic review of past experience. Eur J Cancer 75:98–108.  https://doi.org/10.1016/j.ejca.2017.01.005 PubMedGoogle Scholar
  4. 4.
    Gill J, Ahluwalia MK, Geller D, Gorlick R (2013) New targets and approaches in osteosarcoma. Pharmacol Ther 137(1):89–99.  https://doi.org/10.1016/j.pharmthera.2012.09.003 PubMedGoogle Scholar
  5. 5.
    Janeway KA, Grier HE (2010) Sequelae of osteosarcoma medical therapy: a review of rare acute toxicities and late effects. Lancet Oncol 11(7):670–678.  https://doi.org/10.1016/s1470-2045(10)70062-0 PubMedGoogle Scholar
  6. 6.
    Wong CM, Tsang FH, Ng IO (2018) Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 15(3):137–151.  https://doi.org/10.1038/nrgastro.2017.169
  7. 7.
    Daskalakis NP, Provost AC, Hunter RG, Guffanti G (2018) Noncoding RNAs: stress, glucocorticoids, and posttraumatic stress disorder. Biol Psychiatry 83(10):849–865.  https://doi.org/10.1016/j.biopsych.2018.01.009
  8. 8.
    Salta E, De Strooper B (2017) Noncoding RNAs in neurodegeneration. Nat Rev Neurosci 18(10):627–640.  https://doi.org/10.1038/nrn.2017.90
  9. 9.
    Kour S, Rath PC (2015) Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev 26:1–21.  https://doi.org/10.1016/j.arr.2015.12.001
  10. 10.
    Ji Q, Xu X, Song Q, Xu Y, Tai Y, Goodman SB, Bi W, Xu M, Jiao S, Maloney WJ, Wang Y (2018) miR-223-3p inhibits human osteosarcoma metastasis and progression by directly targeting CDH6. Mol Ther 26(5):1299–1312.  https://doi.org/10.1016/j.ymthe.2018.03.009
  11. 11.
    Andersen GB, Knudsen A, Hager H, Hansen LL, Tost J (2017) miRNA profiling identifies deregulated miRNAs associated with osteosarcoma development and time to metastasis in two large cohorts. Mol Oncol 12(1):114–131.  https://doi.org/10.1002/1878-0261.12154
  12. 12.
    Lin C, Yang L (2017) Long noncoding RNA in Cancer: wiring signaling circuitry. Trends Cell Biol 28(4):287–301.  https://doi.org/10.1016/j.tcb.2017.11.008
  13. 13.
    Evans JR, Feng FY, Chinnaiyan AM (2016) The bright side of dark matter: lncRNAs in cancer. J Clin Invest 126(8):2775–2782.  https://doi.org/10.1172/jci84421 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, Wei F, Guo C, Wu X, Li X, Li Y, Li G, Zeng Z, Xiong W (2018) Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer 17(1):79.  https://doi.org/10.1186/s12943-018-0827-8 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31–44.  https://doi.org/10.1016/j.pharmthera.2018.01.010
  16. 16.
    Baldrich P, Beric A, Meyers BC (2018) Despacito: the slow evolutionary changes in plant microRNAs. Curr Opin Plant Biol 42:16–22.  https://doi.org/10.1016/j.pbi.2018.01.007 PubMedGoogle Scholar
  17. 17.
    Alberti C, Manzenreither RA, Sowemimo I, Burkard TR, Wang J, Mahofsky K, Ameres SL, Cochella L (2018) Cell-type specific sequencing of microRNAs from complex animal tissues. Nat Methods 15(4):283–289.  https://doi.org/10.1038/nmeth.4610
  18. 18.
    Tang Q, Qiu L, Li G (2018) Baculovirus-encoded MicroRNAs: a brief overview and future prospects. Curr Microbiol.  https://doi.org/10.1007/s00284-018-1443-y
  19. 19.
    Pratap P, Raza ST, Abbas S, Mahdi F (2018) MicroRNA-associated carcinogenesis in lung carcinoma. J Cancer Res Ther 14(2):249–254.  https://doi.org/10.4103/0973-1482.187283 PubMedGoogle Scholar
  20. 20.
    Anthiya S, Griveau A, Loussouarn C, Baril P, Garnett M, Issartel JP, Garcion E (2018) MicroRNA-based drugs for brain tumors. Trends Cancer 4(3):222–238.  https://doi.org/10.1016/j.trecan.2017.12.008 PubMedGoogle Scholar
  21. 21.
    Wu T, Du Y (2017) LncRNAs: from basic research to medical application. Int J Biol Sci 13(3):295–307.  https://doi.org/10.7150/ijbs.16968 PubMedPubMedCentralGoogle Scholar
  22. 22.
    Min L, Garbutt C, Tu C, Hornicek F, Duan Z (2017) Potentials of long noncoding RNAs (LncRNAs) in sarcoma: from biomarkers to therapeutic targets. Int J Mol Sci 18(4).  https://doi.org/10.3390/ijms18040731
  23. 23.
    Klinge CM (2018) Noncoding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer 25(4):R259–R282.  https://doi.org/10.1530/erc-17-0548
  24. 24.
    Yao T, Chen Q, Fu L, Guo J (2017) circRNAs: biogenesis, properties, roles and their relationships with liver diseases. Hepatol Res 47(6):497–504.  https://doi.org/10.1111/hepr.12871
  25. 25.
    Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnusamy M, Wang K, Li P (2017) Circular RNAs: a novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci 13(12):1497–1506.  https://doi.org/10.7150/ijbs.22531 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Haque S, Harries LW (2017) Circular RNAs (circRNAs) in health and disease. Genes (Basel) 8(12).  https://doi.org/10.3390/genes8120353
  27. 27.
    Zhao ZJ, Shen J (2015) Circular RNA participates in the carcinogenesis and the malignant behavior of Cancer. RNA Biol 14(5):514–521.  https://doi.org/10.1080/15476286.2015.1122162
  28. 28.
    Hsiao KY, Sun HS, Tsai SJ (2017) Circular RNA - new member of noncoding RNA with novel functions. Exp Biol Med 242(11):1136–1141.  https://doi.org/10.1177/1535370217708978
  29. 29.
    Ji Q, Zhang C, Sun X, Li Q (2018) Circular RNAs function as competing endogenous RNAs in multiple types of cancer. Oncol Lett 15(1):23–30.  https://doi.org/10.3892/ol.2017.7348 PubMedGoogle Scholar
  30. 30.
    Han YN, Xia SQ, Zhang YY, Zheng JH, Li W (2017) Circular RNAs: a novel type of biomarker and genetic tools in cancer. Oncotarget 8(38):64551–64563.  https://doi.org/10.18632/oncotarget.18350
  31. 31.
    Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA, Goodall GJ (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134.  https://doi.org/10.1016/j.cell.2015.02.014 PubMedGoogle Scholar
  32. 32.
    Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell 67(2):214–227.  https://doi.org/10.1016/j.molcel.2017.05.023
  33. 33.
    Wu P, Liang J, Yu F, Zhou Z, Tang J, Li K (2016) miR-145 promotes osteosarcoma growth by reducing expression of the transcription factor friend leukemia virus integration 1. Oncotarget 7(27):42241–42251.  https://doi.org/10.18632/oncotarget.9948
  34. 34.
    Hirahata M, Osaki M, Kanda Y, Sugimoto Y, Yoshioka Y, Kosaka N, Takeshita F, Fujiwara T, Kawai A, Ito H, Ochiya T, Okada F (2016) PAI-1, a target gene of miR-143, regulates invasion and metastasis by upregulating MMP-13 expression of human osteosarcoma. Cancer Medicine 5(5):892–902.  https://doi.org/10.1002/cam4.651
  35. 35.
    Xu M, Jin H, Xu CX, Sun B, Mao Z, Bi WZ, Wang Y (2014) miR-382 inhibits tumor growth and enhance chemosensitivity in osteosarcoma. Oncotarget 5(19):9472–9483.  https://doi.org/10.18632/oncotarget.2418
  36. 36.
    Lu J, Song G, Tang Q, Yin J, Zou C, Zhao Z, Xie X, Xu H, Huang G, Wang J, Lee DF, Khokha R, Yang H, Shen J (2016) MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1. Oncogene 36(2):231–241.  https://doi.org/10.1038/onc.2016.194
  37. 37.
    Wang Y, Wang N, Zeng X, Sun J, Wang G, Xu H, Zhao W (2017) MicroRNA-335 and its target Rock1 synergistically influence tumor progression and prognosis in osteosarcoma. Oncol Lett 13(5):3057–3065.  https://doi.org/10.3892/ol.2017.5818 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Jin H, Wang W (2015) MicroRNA-539 suppresses osteosarcoma cell invasion and migration in vitro and targeting matrix metallopeptidase-8. Int J Clin Exp Pathol 8(7):8075–8082PubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhu K, Liu L, Zhang J, Wang Y, Liang H, Fan G, Jiang Z, Zhang CY, Chen X, Zhou G (2016) MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6. Protein Cell 7(6):434–444.  https://doi.org/10.1007/s13238-016-0277-2
  40. 40.
    Jiang R, Zhang C, Liu G, Gu R, Wu H (2017) MicroRNA-126 inhibits proliferation, migration, invasion and EMT in osteosarcoma by targeting ZEB1. J Cell Biochem 118(11):3765–3774.  https://doi.org/10.1002/jcb.26024
  41. 41.
    Li CH, Yu TB, Qiu HW, Zhao X, Zhou CL, Qi C (2017) miR-150 is downregulated in osteosarcoma and suppresses cell proliferation, migration and invasion by targeting ROCK1. Oncol Lett 13(4):2191–2197.  https://doi.org/10.3892/ol.2017.5709 PubMedPubMedCentralGoogle Scholar
  42. 42.
    Li G, Cai M, Fu D, Chen K, Sun M, Cai Z, Cheng B (2012) Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem 30(6):1481–1490.  https://doi.org/10.1159/000343336 PubMedGoogle Scholar
  43. 43.
    Wang W, Zhou X, Wei M (2015) MicroRNA-144 suppresses osteosarcoma growth and metastasis by targeting ROCK1 and ROCK2. Oncotarget 6(12):10297–10308.  https://doi.org/10.18632/oncotarget.3305 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Niu J, Sun Y, Guo Q, Niu D, Liu B (2016) miR-1 inhibits cell growth, migration, and invasion by targeting VEGFA in osteosarcoma cells. Dis Markers 2016:7068986.  https://doi.org/10.1155/2016/7068986
  45. 45.
    Han K, Chen X, Bian N, Ma B, Yang T, Cai C, Fan Q, Zhou Y, Zhao TB (2015) MicroRNA profiling identifies MiR-195 suppresses osteosarcoma cell metastasis by targeting CCND1. Oncotarget 6(11):8875–8889.  https://doi.org/10.18632/oncotarget.3560
  46. 46.
    Duan Z, Choy E, Harmon D, Liu X, Susa M, Mankin H, Hornicek F (2011) MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther 10(8):1337–1345.  https://doi.org/10.1158/1535-7163.mct-11-0096 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang J, Hou W, Chai M, Zhao H, Jia J, Sun X, Zhao B, Wang R (2016) MicroRNA-127-3p inhibits proliferation and invasion by targeting SETD8 in human osteosarcoma cells. Biochem Biophys Res Commun 469(4):1006–1011.  https://doi.org/10.1016/j.bbrc.2015.12.067 PubMedGoogle Scholar
  48. 48.
    Liu B, Zhou Y, Chen X, Peng D (2017) IL-1β-mediated NF-κB signaling augments the osteosarcoma cell growth through modulating miR-376c/TGFA axis. Die Pharmazie 72(7):419–424.  https://doi.org/10.1691/ph.2017.6888 PubMedGoogle Scholar
  49. 49.
    Liu Y, Li Y, Liu J, Wu Y, Zhu Q (2015) MicroRNA-132 inhibits cell growth and metastasis in osteosarcoma cell lines possibly by targeting Sox4. Int J Oncol 47(5):1672–1684.  https://doi.org/10.3892/ijo.2015.3147
  50. 50.
    Pu Y, Zhao F, Cai W, Meng X, Li Y, Cai S (2016) MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively. Clin Exp Metastasis 33(4):359–372.  https://doi.org/10.1007/s10585-016-9783-0
  51. 51.
    Zhuo W, Ge W, Meng G, Jia S, Zhou X, Liu J (2015) MicroRNA-20a promotes the proliferation and cell cycle of human osteosarcoma cells by suppressing early growth response 2 expression. Mol Med Rep 12(4):4989–4994.  https://doi.org/10.3892/mmr.2015.4098
  52. 52.
    Yang Y, Huang G, Zhou Z, Fewell JG, Kleinerman ES (2017) miR-20a regulates Fas expression in osteosarcoma cells by modulating Fas promoter activity and can be therapeutically targeted to inhibit lung metastases. Mol Cancer Ther 17(1):130–139.  https://doi.org/10.1158/1535-7163.mct-17-0042
  53. 53.
    Zhang H, Guo X, Feng X, Wang T, Hu Z, Que X, Tian Q, Zhu T, Guo G, Huang W, Li X (2016) MiRNA-543 promotes osteosarcoma cell proliferation and glycolysis by partially suppressing PRMT9 and stabilizing HIF-1α protein. Oncotarget 8(2):2342–2355.  https://doi.org/10.18632/oncotarget.13672
  54. 54.
    Salah Z, Arafeh R, Maximov V, Galasso M, Khawaled S, Abou-Sharieha S, Volinia S, Jones KB, Croce CM, Aqeilan RI (2015) miR-27a and miR-27a* contribute to metastatic properties of osteosarcoma cells. Oncotarget 6(7):4920–4935.  https://doi.org/10.18632/oncotarget.3025
  55. 55.
    Bhattacharya S, Chalk AM, Ng AJ, Martin TJ, Zannettino AC, Purton LE, Lu J, Baker EK, Walkley CR (2016) Increased miR-155-5p and reduced miR-148a-3p contribute to the suppression of osteosarcoma cell death. Oncogene 35(40):5282–5294.  https://doi.org/10.1038/onc.2016.68
  56. 56.
    Wang C, Ba X, Guo Y, Sun D, Jiang H, Li W, Huang Z, Zhou G, Wu S, Zhang J, Chen J (2017) MicroRNA-199a-5p promotes tumour growth by dual-targeting PIAS3 and p27 in human osteosarcoma. Sci Rep 7:41456.  https://doi.org/10.1038/srep41456 PubMedPubMedCentralGoogle Scholar
  57. 57.
    Zhu SW, Li JP, Ma XL, Ma JX, Yang Y, Chen Y, Liu W (2015) miR-9 modulates osteosarcoma cell growth by targeting the GCIP tumor suppressor. Asian Pac J Cancer Prev 16(11):4509–4513Google Scholar
  58. 58.
    Xu B, Xia H, Cao J, Wang Z, Yang Y, Lin Y (2017) MicroRNA-21 inhibits the apoptosis of osteosarcoma cell line SAOS-2 via targeting Caspase-8. Oncol Res 25(7):1161–1168.  https://doi.org/10.3727/096504017x14841698396829
  59. 59.
    Lu T, Zhang C, Chai MX, An YB, Jia JL (2015) MiR-374a promotes the proliferation of osteosarcoma cell proliferation by targeting Axin2. Int J Clin Exp Pathol 8(9):10776–10783Google Scholar
  60. 60.
    Huang YZ, Zhang J, Shao HY, Chen JP, Zhao HY (2015) MicroRNA-191 promotes osteosarcoma cells proliferation by targeting checkpoint kinase 2. Tumour Biol 36(8):6095–6101.  https://doi.org/10.1007/s13277-015-3290-9 PubMedGoogle Scholar
  61. 61.
    Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S, Liu Y, Ye L, Li Y, Zhang X (2017) MicroRNA-145 modulates N6 methyladenosine levels by targeting the 3' untranslated mRNA region of the N6-methyladenosine binding YTH domain family 2 protein. J Biol Chem 292(9):3614–3623.  https://doi.org/10.1074/jbc.M116.749689
  62. 62.
    Liu S, Gao G, Yan D, Chen X, Yao X, Guo S, Li G, Zhao Y (2017) Effects of miR-145-5p through NRAS on the cell proliferation, apoptosis, migration, and invasion in melanoma by inhibiting MAPK and PI3K/AKT pathways. Cancer Medicine 6(4):819–833.  https://doi.org/10.1002/cam4.1030
  63. 63.
    Mataki H, Seki N, Mizuno K, Nohata N, Kamikawaji K, Kumamoto T, Koshizuka K, Goto Y, Inoue H (2016) Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma. Oncotarget 7(44):72084–72098.  https://doi.org/10.18632/oncotarget.12290
  64. 64.
    Li Y, Liu J, Liu ZZ, Wei WB (2016) MicroRNA-145 inhibits tumour growth and metastasis in osteosarcoma by targeting cyclin-dependent kinase, CDK6. Eur Rev Med Pharmacol Sci 20(24):5117–5125PubMedGoogle Scholar
  65. 65.
    Fan L, Wu Q, Xing X, Wei Y, Shao Z (2012) MicroRNA-145 targets vascular endothelial growth factor and inhibits invasion and metastasis of osteosarcoma cells. Acta Biochim Biophys Sin Shanghai 44(5):407–414.  https://doi.org/10.1093/abbs/gms019 PubMedGoogle Scholar
  66. 66.
    Liu K, Huang J, Ni J, Song D, Ding M, Wang J, Huang X, Li W (2017) MALAT1 promotes osteosarcoma development by regulation of HMGB1 via miR-142-3p and miR-129-5p. Cell Cycle 16(6):578–587.  https://doi.org/10.1080/15384101.2017.1288324 PubMedPubMedCentralGoogle Scholar
  67. 67.
    Luo W, He H, Xiao W, Liu Q, Deng Z, Lu Y, Wang Q, Zheng Q, Li Y (2016) MALAT1 promotes osteosarcoma development by targeting TGFA via MIR376A. Oncotarget 7(34):54733–5474.  https://doi.org/10.18632/oncotarget.10752
  68. 68.
    Dong Y, Liang G, Yuan B, Yang C, Gao R, Zhou X (2015) MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol 36(3):1477–1486.  https://doi.org/10.1007/s13277-014-2631-4 PubMedGoogle Scholar
  69. 69.
    Zhang Y, Dai Q, Zeng F, Liu H (2017) MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the Rac1/JNK pathway via targeting MiR-509. Oncol Res.  https://doi.org/10.3727/096504017x14957939026111
  70. 70.
    Zhang ZC, Tang C, Dong Y, Zhang J, Yuan T, Li XL (2018) Targeting LncRNA-MALAT1 suppresses the progression of osteosarcoma by altering the expression and localization of β-catenin. J Cancer 9(1):71–80.  https://doi.org/10.7150/jca.22113 PubMedPubMedCentralGoogle Scholar
  71. 71.
    Wang H, Yu Y, Fan S, Luo L (2017) Knockdown of long noncoding RNA TUG1 inhibits the proliferation and cellular invasion of osteosarcoma cells by sponging MiR-153. Oncol Res.  https://doi.org/10.3727/096504017x14908298412505
  72. 72.
    Xie CH, Cao YM, Huang Y, Shi QW, Guo JH, Fan ZW, Li JG, Chen BW, Wu BY (2016) Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumour Biol.  https://doi.org/10.1007/s13277-016-5391-5
  73. 73.
    Wang Y, Yang T, Zhang Z, Lu M, Zhao W, Zeng X, Zhang W (2017) Long non-coding RNA TUG1 promotes migration and invasion by acting as a ceRNA of miR-335-5p in osteosarcoma cells. Cancer Sci.  https://doi.org/10.1111/cas.13201
  74. 74.
    Qian M, Yang X, Li Z, Jiang C, Song D, Yan W, Liu T, Wu Z, Kong J, Wei H, Xiao J (2015) P50-associated COX-2 extragenic RNA (PACER) overexpression promotes proliferation and metastasis of osteosarcoma cells by activating COX-2 gene. Tumour Biol.  https://doi.org/10.1007/s13277-015-3838-8
  75. 75.
    Ruan W, Wang P, Feng S, Xue Y, Li Y (2015) Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes cell proliferation and migration by upregulating angiomotin gene expression in human osteosarcoma cells. Tumour Biol.  https://doi.org/10.1007/s13277-015-4256-7
  76. 76.
    Li M, Chen H, Zhao Y, Gao S, Cheng C (2016) H19 functions as a ceRNA in promoting metastasis through decreasing miR-200s activity in osteosarcoma. DNA Cell Biol.  https://doi.org/10.1089/dna.2015.3171
  77. 77.
    Sun J, Wang X, Fu C, Wang X, Zou J, Hua H, Bi Z (2016) Long noncoding RNA FGFR3-AS1 promotes osteosarcoma growth through regulating its natural antisense transcript FGFR3. Mol Biol Rep.  https://doi.org/10.1007/s11033-016-3975-1
  78. 78.
    Li Z, Zhao L, Wang Q (2016) Overexpression of long non-coding RNA HOTTIP increases chemoresistance of osteosarcoma cell by activating the Wnt/β-catenin pathway. Am J Transl Res 8(5):2385–2393PubMedPubMedCentralGoogle Scholar
  79. 79.
    Chen F, Mo J, Zhang L (2016) Long noncoding RNA BCAR4 promotes osteosarcoma progression through activating GLI2-dependent gene transcription. Tumour Biol.  https://doi.org/10.1007/s13277-016-5256-y
  80. 80.
    Yin Z, Ding H, He E, Chen J, Li M (2016) Overexpression of long non-coding RNA MFI2 promotes cell proliferation and suppresses apoptosis in human osteosarcoma. Oncol Rep.  https://doi.org/10.3892/or.2016.5013
  81. 81.
    Zhao H, Hou W, Tao J, Zhao Y, Wan G, Ma C, Xu H (2016) Upregulation of lncRNA HNF1A-AS1 promotes cell proliferation and metastasis in osteosarcoma through activation of the Wnt/β-catenin signaling pathway. Am J Transl Res 8(8):3503–3512PubMedPubMedCentralGoogle Scholar
  82. 82.
    Wang Y, Zhang L, Zheng X, Zhong W, Tian X, Yin B, Tian K, Zhang W (2016) Long non-coding RNA LINC00161 sensitises osteosarcoma cells to cisplatin-induced apoptosis by regulating the miR-645-IFIT2 axis. Cancer Lett 382(2):137–146.  https://doi.org/10.1016/j.canlet.2016.08.024 PubMedGoogle Scholar
  83. 83.
    Zhou Q, Chen F, Zhao J, Li B, Liang Y, Pan W, Zhang S, Wang X, Zheng D (2016) Long non-coding RNA PVT1 promotes osteosarcoma development by acting as a molecular sponge to regulate miR-195. Oncotarget.  https://doi.org/10.18632/oncotarget.13012
  84. 84.
    Liu C, Lin J (2016) Long noncoding RNA ZEB1-AS1 acts AS an oncogene in osteosarcoma by epigenetically activating ZEB1. Am J Transl Res 8(10):4095–4105PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sun L, Yang C, Xu J, Feng Y, Wang L, Cui T (2016) Long noncoding RNA EWSAT1 promotes osteosarcoma cell growth and metastasis through suppression of MEG3 expression. DNA Cell Biol.  https://doi.org/10.1089/dna.2016.3467
  86. 86.
    Kotake Y, Goto T, Naemura M, Inoue Y, Okamoto H, Tahara K (2017) Long noncoding RNA PANDA positively regulates proliferation of osteosarcoma cells. Anticancer Res 37(1):81–85PubMedGoogle Scholar
  87. 87.
    Chun-Lin Z, Kun-Peng Z, Xiao-Long M (2017) Antisense lncRNA FOXC2-AS1 promotes doxorubicin resistance in osteosarcoma by increasing the expression of FOXC2. Cancer Lett.  https://doi.org/10.1016/j.canlet.2017.03.018
  88. 88.
    Zeng HF, Qiu HY, Feng FB (2017) Long noncoding RNA LINC01133 sponges miR-422a to aggravate the tumorigenesis of human osteosarcoma. Oncol Res.  https://doi.org/10.3727/096504017x14907375885605
  89. 89.
    Lv GY, Miao J, Zhang XL (2017) Long non-coding RNA XIST promotes osteosarcoma progression by targeting Ras-related protein RAP2B via miR-320b. Oncol Res.  https://doi.org/10.3727/096504017x14920318811721
  90. 90.
    Han F, Wang C, Wang Y, Zhang L (2017) Long noncoding RNA ATB promotes osteosarcoma cell proliferation, migration and invasion by suppressing miR-200s. Am J Cancer Res 7(4):770–783PubMedPubMedCentralGoogle Scholar
  91. 91.
    Wang Y, Liang T, Wang Y, Huang Y, Li Y (2017) Long non-coding RNA AK093407 promotes proliferation and inhibits apoptosis of human osteosarcoma cells via STAT3 activation. Am J Cancer Res 7(4):892–902PubMedPubMedCentralGoogle Scholar
  92. 92.
    Zhao J, Cheng L (2017) Long non-coding RNA CCAT1/miR-148a axis promotes osteosarcoma proliferation and migration through regulating PIK3IP1. Acta Biochim Biophys Sin Shanghai:1–10.  https://doi.org/10.1093/abbs/gmx041
  93. 93.
    Cui M, Wang J, Li Q, Zhang J, Jia J, Zhan X (2017) Long non-coding RNA HOXA11-AS functions as a competing endogenous RNA to regulate ROCK1 expression by sponging miR-124-3p in osteosarcoma. Biomed Pharmacother 92:437–444.  https://doi.org/10.1016/j.biopha.2017.05.081 PubMedGoogle Scholar
  94. 94.
    Wang Z, Liu Z, Wu S (2017) Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget.  https://doi.org/10.18632/oncotarget.16356
  95. 95.
    Ye K, Wang S, Zhang H, Han H, Ma B, Nan W (2017) Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. J Cell Biochem.  https://doi.org/10.1002/jcb.26145
  96. 96.
    Kun-Peng Z, Xiao-Long M, Chun-Lin Z (2017) LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through down-regulating ABCB1 and ABCC1. Oncotarget.  https://doi.org/10.18632/oncotarget.17985
  97. 97.
    Patop IL, Kadener S (2017) circRNAs in Cancer. Curr Opin Genet Dev 48:121–127.  https://doi.org/10.1016/j.gde.2017.11.007 PubMedGoogle Scholar
  98. 98.
    Zhong Z, Lv M, Chen J (2016) Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep 6:30919.  https://doi.org/10.1038/srep30919 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Jiang W, Wen D, Gong L, Wang Y, Liu Z, Yin F (2018) Circular RNA hsa_circ_0000673 promotes hepatocellular carcinoma malignance by decreasing miR-767-3p targeting SET. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2018.04.041
  100. 100.
    Zong L, Sun Q, Zhang H, Chen Z, Deng Y, Li D, Zhang L (2018) Increased expression of circRNA_102231 in lung cancer and its clinical significance. Biomed Pharmacother 102:639–644.  https://doi.org/10.1016/j.biopha.2018.03.084 PubMedGoogle Scholar
  101. 101.
    Xie H, Ren X, Xin S, Lan X, Lu G, Y L, Ss Y, Zc Z, Wt L, Ding YQ, Liang L (2016) Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget.  https://doi.org/10.18632/oncotarget.8589
  102. 102.
    Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T, Hu J, Dong G, Yin R, Wang J, Xu L (2018) The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Cancer Res.  https://doi.org/10.1158/0008-5472.can-17-2808
  103. 103.
    Wang F, Wang J, Cao X, Xu L, Chen L (2018) Hsa_circ_0014717 is downregulated in colorectal cancer and inhibits tumor growth by promoting p16 expression. Biomed Pharmacother 98:775–782.  https://doi.org/10.1016/j.biopha.2018.01.015 PubMedGoogle Scholar
  104. 104.
    Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ (2016) Circular RNA-ITCH suppresses lung Cancer proliferation via inhibiting the Wnt/β-catenin pathway. Biomed Res Int 2016:1579490.  https://doi.org/10.1155/2016/1579490 PubMedPubMedCentralGoogle Scholar
  105. 105.
    Li P, Chen S, Chen H, Mo X, Li T, Shao Y, Xiao B, Guo J (2015) Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta 444:132–136.  https://doi.org/10.1016/j.cca.2015.02.018 PubMedGoogle Scholar
  106. 106.
    Wang X, Zhang Y, Huang L, Zhang J, Pan F, Li B, Yan Y, Jia B, Liu H, Li S, Zheng W (2015) Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol 8(12):16020–16025PubMedPubMedCentralGoogle Scholar
  107. 107.
    Ji WX, Qiu CL, Wang M, Mao N, Wu SF, Dai YH (2018) Hsa_circ_0001649: a circular RNA and potential novel biomarker for colorectal cancer. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2018.02.036
  108. 108.
    Yu J, Xu QG, Wang ZG, Yang Y, Zhang L, Ma JZ, Sun SH, Yang F, Zhou WP (2018) Circular RNA cSMARCA5 inhibits growth and metastasis in hepatocellular carcinoma. J Hepatol.  https://doi.org/10.1016/j.jhep.2018.01.012
  109. 109.
    Jin H, Jin X, Zhang H, Wang W (2017) Circular RNA hsa-circ-0016347 promotes proliferation, invasion and metastasis of osteosarcoma cells. Oncotarget.  https://doi.org/10.18632/oncotarget.16104
  110. 110.
    Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, Tong D, Wu D, Li C, Wei Q, Zhang X, Li D, Liu P, Cui H, Tang H, Ji F (2017) Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget.  https://doi.org/10.18632/oncotarget.18671
  111. 111.
    Deng N, Li L, Gao J, Zhou J, Wang Y, Wang C, Liu Y (2017) Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2017.11.028
  112. 112.
    Li JF, Song YZ (2017) Circular RNA hsa_circ_0001564 regulates osteosarcoma proliferation and apoptosis by acting miRNA sponge. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2017.12.050
  113. 113.
    Liu X, Zhong Y, Li J, Shan A (2017) Circular RNA circ-NT5C2 acts as an oncogene in osteosarcoma proliferation and metastasis through targeting miR-448. Oncotarget 8(70):114829–114838.  https://doi.org/10.18632/oncotarget.22162 PubMedPubMedCentralGoogle Scholar
  114. 114.
    Kun-Peng Z, Xiao-Long M, Chun-Lin Z (2018) Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci 14(3):321–330.  https://doi.org/10.7150/ijbs.24360 PubMedPubMedCentralGoogle Scholar
  115. 115.
    Angulo P, Kaushik G, Subramaniam D, Dandawate P, Neville K, Chastain K, Anant S (2017) Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy. J Hematol Oncol 10(1):10.  https://doi.org/10.1186/s13045-016-0373-z PubMedPubMedCentralGoogle Scholar
  116. 116.
    Lin G, Liu B, Meng Z, Liu Y, Li X, Wu X, Zhou Q, Xu K (2017) MiR-26a enhances invasive capacity by suppressing GSK3β in human lung cancer cells. Exp Cell Res.  https://doi.org/10.1016/j.yexcr.2017.02.033
  117. 117.
    Qu F, Li CB, Yuan BT, Qi W, Li HL, Shen XZ, Zhao G, Wang JT, Liu YJ (2016) MicroRNA-26a induces osteosarcoma cell growth and metastasis via the Wnt/β-catenin pathway. Oncol Lett 11(2):1592–1596.  https://doi.org/10.3892/ol.2015.4073 PubMedGoogle Scholar
  118. 118.
    Zhu XB, Zhang ZC, Han GS, Han JZ, Qiu DP (2017) Overexpression of miR-214 promotes the progression of human osteosarcoma by regulating the Wnt/β-catenin signaling pathway. Mol Med Rep.  https://doi.org/10.3892/mmr.2017.6203
  119. 119.
    Cai L, Lv J, Zhang Y, Li J, Wang Y, Yang H (2017) The lncRNA HNF1A-AS1 is a negative prognostic factor and promotes tumorigenesis in osteosarcoma. J Cell Mol Med.  https://doi.org/10.1111/jcmm.12944
  120. 120.
    Gupte A, Baker EK, Wan SS, Stewart E, Loh A, Shelat AA, Gould CM, Chalk AM, Taylor S, Lackovic K, Karlström Å, Mutsaers AJ, Desai J, Madhamshettiwar PB, Zannettino AC, Burns C, Huang DC, Dyer MA, Simpson KJ, Walkley CR (2015) Systematic screening identifies dual PI3K and mTOR inhibition as a conserved therapeutic vulnerability in osteosarcoma. Clin Cancer Res 21(14):3216–3229.  https://doi.org/10.1158/1078-0432.ccr-14-3026 PubMedPubMedCentralGoogle Scholar
  121. 121.
    Haddadi N, Lin Y, Travis G, Simpson AM, McGowan EM, Nassif NT (2018) PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer 17(1):37.  https://doi.org/10.1186/s12943-018-0803-3 PubMedPubMedCentralGoogle Scholar
  122. 122.
    Yang J, Zou Y, Jiang D (2018) Honokiol suppresses proliferation and induces apoptosis via regulation of the miR-21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells. Int J Mol Med.  https://doi.org/10.3892/ijmm.2018.3433
  123. 123.
    Shao XJ, Miao MH, Xue J, Xue J, Ji XQ, Zhu H (2015) The down-regulation of MicroRNA-497 contributes to cell growth and cisplatin resistance through PI3K/Akt pathway in osteosarcoma. Cell Physiol Biochem 36(5):2051–2062.  https://doi.org/10.1159/000430172 PubMedGoogle Scholar
  124. 124.
    Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, Miao N, Shen J, Peng T (2017) lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett.  https://doi.org/10.1016/j.canlet.2017.06.009
  125. 125.
    Yang J, Guo W, Wang L, Yu L, Mei H, Fang S, Chen A, Liu Y, Xia K, Liu G (2017) Notch signaling is important for epithelial-mesenchymal transition induced by low concentrations of doxorubicin in osteosarcoma cell lines. Oncol Lett 13(4):2260–2268.  https://doi.org/10.3892/ol.2017.5708 PubMedPubMedCentralGoogle Scholar
  126. 126.
    Xu Y, Shu B, Tian Y, Wang G, Wang Y, Wang J, Dong Y (2018) Oleanolic acid induces osteosarcoma cell apoptosis by inhibition of notch signaling. Mol Carcinog.  https://doi.org/10.1002/mc.22810
  127. 127.
    Cai X, Liu Y, Yang W, Xia Y, Yang C, Yang S, Liu X (2015) Long noncoding RNA MALAT1 as a potential therapeutic target in osteosarcoma. J Orthop Res.  https://doi.org/10.1002/jor.23105
  128. 128.
    Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R (2017) Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci.  https://doi.org/10.1007/s00018-017-2626-6
  129. 129.
    Ragusa M, Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Battaglia R, Barbagallo D, Di Pietro C, Purrello M (2017) Molecular Crosstalking among noncoding RNAs: a new network layer of genome regulation in Cancer. Int J Genomics 2017:4723193.  https://doi.org/10.1155/2017/4723193 PubMedPubMedCentralGoogle Scholar
  130. 130.
    Xiao B, Zhang W, Chen L, Hang J, Wang L, Zhang R, Liao Y, Chen J, Ma Q, Sun Z, Li L (2018) Analysis of the miRNA-mRNA-lncRNA network in human estrogen receptor-positive and estrogen receptor-negative breast cancer based on TCGA data. Gene.  https://doi.org/10.1016/j.gene.2018.03.011
  131. 131.
    Zhang R, Xia T (2017) Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. Int J Oncol.  https://doi.org/10.3892/ijo.2017.4127
  132. 132.
    Yang G, Yuan J, Li K (2013) EMT transcription factors: implication in osteosarcoma. Med Oncol 30(4):697.  https://doi.org/10.1007/s12032-013-0697-2 PubMedGoogle Scholar
  133. 133.
    Karlsson MC, Gonzalez SF, Welin J, Fuxe J (2017) Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol.  https://doi.org/10.1002/1878-0261.12092
  134. 134.
    Zhang Z, Zhang M, Chen Q, Zhang Q (2017) Downregulation of microRNA-145 promotes epithelial-mesenchymal transition via regulating snail in osteosarcoma. Cancer Gene Ther (2):83–88.  https://doi.org/10.1038/cgt.2017.1
  135. 135.
    Waresijiang N, Sun J, Abuduaini R, Jiang T, Zhou W, Yuan H (2016) The downregulation of miR-125a-5p functions as a tumor suppressor by directly targeting MMP-11 in osteosarcoma. Mol Med Rep.  https://doi.org/10.3892/mmr.2016.5141
  136. 136.
    Xu J, Ding R, Xu Y (2016) Effects of long non-coding RNA SPRY4-IT1 on osteosarcoma cell biological behavior. Am J Transl Res 8(12):5330–5337PubMedPubMedCentralGoogle Scholar
  137. 137.
    Chen J, Yan D, Wu W, Zhu J, Ye W, Shu Q (2016) MicroRNA-130a promotes the metastasis and epithelial-mesenchymal transition of osteosarcoma by targeting PTEN. Oncol Rep.  https://doi.org/10.3892/or.2016.4719
  138. 138.
    Xue Z, Zhao J, Niu L, An G, Guo Y, Ni L (2015) Up-regulation of MiR-300 promotes proliferation and invasion of osteosarcoma by targeting BRD7. PLoS One 10(5):e0127682.  https://doi.org/10.1371/journal.pone.0127682 PubMedPubMedCentralGoogle Scholar
  139. 139.
    Neumann DP, Goodall GJ, Gregory PA (2017) Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2017.08.008
  140. 140.
    Liao JY, Wu J, Wang YJ, He JH, Deng WX, Hu K, Zhang YC, Zhang Y, Yan H, Wang DL, Liu Q, Zeng MS, Phillip Koeffler H, Song E, Yin D (2017) Deep sequencing reveals a global reprogramming of lncRNA transcriptome during EMT. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbamcr.2017.06.003
  141. 141.
    Tirtei E, Asaftei SD, Manicone R, Cesari M, Paioli A, Rocca M, Ferrari S, Fagioli F (2017) Survival after second and subsequent recurrences in osteosarcoma: a retrospective multicenter analysis. Tumori 0.  https://doi.org/10.5301/tj.5000636
  142. 142.
    Zheng Y, Wang G, Chen R, Hua Y, Cai Z (2018) Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties, influence on tumor growth, and therapeutic implications. Stem Cell Res Ther 9(1):22.  https://doi.org/10.1186/s13287-018-0780-x PubMedPubMedCentralGoogle Scholar
  143. 143.
    Zhang CL, Zhu KP, Shen GQ, Zhu ZS (2015) A long non-coding RNA contributes to doxorubicin resistance of osteosarcoma. Tumour Biol.  https://doi.org/10.1007/s13277-015-4130-7
  144. 144.
    Lin BC, Huang D, Yu CQ, Mou Y, Liu YH, Zhang DW, Shi FJ (2016) MicroRNA-184 modulates doxorubicin resistance in osteosarcoma cells by targeting BCL2L1. Med Sci Monit 22:1761–1765PubMedPubMedCentralGoogle Scholar
  145. 145.
    Duan Z, Gao Y, Shen J, Choy E, Cote G, Harmon D, Bernstein K, Lozano-Calderon S, Mankin H, Hornicek FJ (2017) miR-15b modulates multidrug resistance in human osteosarcoma in vitro and in vivo. Mol Oncol 11(2):151–166.  https://doi.org/10.1002/1878-0261.12015 PubMedGoogle Scholar
  146. 146.
    Pu Y, Yi Q, Zhao F, Wang H, Cai W, Cai S (2016) MiR-20a-5p represses multi-drug resistance in osteosarcoma by targeting the KIF26B gene. Cancer Cell Int 16:64.  https://doi.org/10.1186/s12935-016-0340-3 PubMedPubMedCentralGoogle Scholar
  147. 147.
    Pu Y, Zhao F, Li Y, Cui M, Wang H, Meng X, Cai S (2017) The miR-34a-5p promotes the multi-chemoresistance of osteosarcoma via repression of the AGTR1 gene. BMC Cancer 17(1):45.  https://doi.org/10.1186/s12885-016-3002-x PubMedPubMedCentralGoogle Scholar
  148. 148.
    Tian ZZ, Guo XJ, Zhao YM, Fang Y (2015) Decreased expression of long non-coding RNA MEG3 acts as a potential predictor biomarker in progression and poor prognosis of osteosarcoma. Int J Clin Exp Pathol 8(11):15138–15142PubMedPubMedCentralGoogle Scholar
  149. 149.
    Huang J, Deng G, Liu T, Chen W, Zhou Y (2017) Long noncoding RNA PCAT-1 acts as an oncogene in osteosarcoma by reducing p21 levels. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2017.12.157
  150. 150.
    Yu Z, Xu N, Yang W, Liu Y, Yan F (2018) MicroRNA-411 promoted the osteosarcoma progression by suppressing MTSS1 expression. Environ Sci Pollut Res Int.  https://doi.org/10.1007/s11356-018-1331-9
  151. 151.
    Sun Y, Wang F, Wang L, Jiao Z, Fang J, Li J (2017) MicroRNA-433 regulates apoptosis by targeting PDCD4 in human osteosarcoma cells. Oncol Lett 14(2):2353–2358.  https://doi.org/10.3892/ol.2017.6441 PubMedPubMedCentralGoogle Scholar
  152. 152.
    Jin C, Feng Y, Ni Y, Shan Z (2017) MicroRNA-610 suppresses osteosarcoma oncogenicity via targeting TWIST1 expression. Oncotarget 8(34):56174–56184.  https://doi.org/10.18632/oncotarget.17045 PubMedPubMedCentralGoogle Scholar
  153. 153.
    Liu Z, Li Q, Zhao X, Cui B, Zhang L, Wang Q (2018) MicroRNA-935 inhibits proliferation and invasion of osteosarcoma cells by directly targeting high mobility group box 1. Oncol Res.  https://doi.org/10.3727/096504018x15189093975640
  154. 154.
    Xiao J, Yu W, Hu K, Li M, Chen J, Li Z (2017) miR-92a promotes tumor growth of osteosarcoma by targeting PTEN/AKT signaling pathway. Oncol Rep.  https://doi.org/10.3892/or.2017.5484
  155. 155.
    Abarrategi A, Tornin J, Martinez-Cruzado L, Hamilton A, Martinez-Campos E, Rodrigo JP, González MV, Baldini N, Garcia-Castro J, Rodriguez R (2016) Osteosarcoma: cells-of-origin, Cancer stem cells, and targeted therapies. Stem Cells Int 2016:3631764.  https://doi.org/10.1155/2016/3631764 PubMedPubMedCentralGoogle Scholar
  156. 156.
    Evola FR, Costarella L, Pavone V, Caff G, Cannavò L, Sessa A, Avondo S, Sessa G (2017) Biomarkers of osteosarcoma, chondrosarcoma, and Ewing sarcoma. Front Pharmacol 8:150.  https://doi.org/10.3389/fphar.2017.00150 PubMedPubMedCentralGoogle Scholar
  157. 157.
    Cong C, Wang W, Tian J, Gao T, Zheng W, Zhou C (2017) Identification of serum miR-124 as a biomarker for diagnosis and prognosis in osteosarcoma. Cancer biomarkers 21(2):449–454.  https://doi.org/10.3233/cbm-170672
  158. 158.
    Fujiwara T, Uotani K, Yoshida A, Morita T, Nezu Y, Kobayashi E, Yoshida A, Uehara T, Omori T, Sugiu K, Komatsubara T, Takeda K, Kunisada T, Kawamura M, Kawai A, Ochiya T, Ozaki T (2017) Clinical significance of circulating miR-25-3p as a novel diagnostic and prognostic biomarker in osteosarcoma. Oncotarget.  https://doi.org/10.18632/oncotarget.16498
  159. 159.
    Zou P, Ding J, Fu S (2016) Elevated expression of microRNA-19a predicts a poor prognosis in patients with osteosarcoma. Pathol Res Pract.  https://doi.org/10.1016/j.prp.2016.12.020
  160. 160.
    Niu J, Sun Y, Guo Q, Niu D, Liu B (2016) Serum miR-95-3p is a diagnostic and prognostic marker for osteosarcoma. Springerplus 5(1):1947.  https://doi.org/10.1186/s40064-016-3640-0 PubMedPubMedCentralGoogle Scholar
  161. 161.
    Pang PC, Shi XY, Huang WL, Sun K (2016) miR-497 as a potential serum biomarker for the diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci 20(18):3765–3769PubMedGoogle Scholar
  162. 162.
    Cao L, Wang J, Wang PQ (2016) MiR-326 is a diagnostic biomarker and regulates cell survival and apoptosis by targeting Bcl-2 in osteosarcoma. Biomed Pharmacother 84:828–835.  https://doi.org/10.1016/j.biopha.2016.10.008 PubMedGoogle Scholar
  163. 163.
    Dong J, Liu Y, Liao W, Liu R, Shi P, Wang L (2016) miRNA-223 is a potential diagnostic and prognostic marker for osteosarcoma. J Bone Oncol 5(2):74–79.  https://doi.org/10.1016/j.jbo.2016.05.001 PubMedPubMedCentralGoogle Scholar
  164. 164.
    Cai H, Lin L, Cai H, Tang M, Wang Z (2013) Prognostic evaluation of microRNA-210 expression in pediatric osteosarcoma. Med Oncol 30(2):499.  https://doi.org/10.1007/s12032-013-0499-6 PubMedGoogle Scholar
  165. 165.
    Zhou S, Wang B, Hu J, Zhou Y, Jiang M, Wu M, Qin L, Yang X (2016) miR-421 is a diagnostic and prognostic marker in patients with osteosarcoma. Tumour Biol.  https://doi.org/10.1007/s13277-015-4578-5
  166. 166.
    Taheriazam A, Talaei AJ, Jamshidi M, Shakeri M, Khoshbakht S, Yahaghi E, Shokrani M (2016) Retraction note: up-regulation of miR-130b expression level and down-regulation of miR-218 serve as potential biomarker in the early detection of human osteosarcoma. Diagn Pathol 11(1):112.  https://doi.org/10.1186/s13000-016-0565-4 PubMedPubMedCentralGoogle Scholar
  167. 167.
    Ren X, Shen Y, Zheng S, Liu J, Jiang X (2016) miR-21 predicts poor prognosis in patients with osteosarcoma. Br J Biomed Sci 73(4):158–162.  https://doi.org/10.1080/09674845.2016.1220710 PubMedGoogle Scholar
  168. 168.
    Shi ZW, Wang JL, Zhao N, Guan Y, He W (2016) Single nucleotide polymorphism of hsa-miR-124a affects risk and prognosis of osteosarcoma. Cancer biomarkers 17(2):249–257.  https://doi.org/10.3233/cbm-160637
  169. 169.
    Berlanga P, Muñoz L, Piqueras M, Sirerol JA, Sánchez-Izquierdo MD, Hervás D, Hernández M, Llavador M, Machado I, Llombart-Bosch A, Cañete A, Castel V, Font de Mora J (2016) miR-200c and phospho-AKT as prognostic factors and mediators of osteosarcoma progression and lung metastasis. Mol Oncol.  https://doi.org/10.1016/j.molonc.2016.04.004
  170. 170.
    Lian D, Wang ZZ, Liu NS (2016) MicroRNA-1908 is a biomarker for poor prognosis in human osteosarcoma. Eur Rev Med Pharmacol Sci 20(7):1258–1262PubMedGoogle Scholar
  171. 171.
    Wang NG, Wang DC, Tan BY, Wang F, Yuan ZN (2015) Down-regulation of microRNA152 is associated with the diagnosis and prognosis of patients with osteosarcoma. Int J Clin Exp Pathol 8(8):9314–9319PubMedPubMedCentralGoogle Scholar
  172. 172.
    Nakka M, Allen-Rhoades W, Li Y, Kelly AJ, Shen J, Taylor AM, Barkauskas DA, Yustein JT, Andrulis IL, Wunder JS, Gorlick R, Meltzer PS, Lau CC, Man TK (2017) Biomarker significance of plasma and tumor miR-21, miR-221, and miR-106a in osteosarcoma. Oncotarget 8(57):96738–96752.  https://doi.org/10.18632/oncotarget.18236 PubMedPubMedCentralGoogle Scholar
  173. 173.
    Wang T, Ji F, Dai Z, Xie Y, Yuan D (2015) Increased expression of microRNA-191 as a potential serum biomarker for diagnosis and prognosis in human osteosarcoma. Cancer biomarkers 15(5):543–550.  https://doi.org/10.3233/cbm-150493
  174. 174.
    Wen JJ, Ma YD, Yang GS, Wang GM (2017) Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci 21(3):498–503PubMedGoogle Scholar
  175. 175.
    Zhou DK, Yang XW, Li H, Yang Y, Zhu ZJ, Wu N (2016) Up-regulation of long noncoding RNA CCAL predicts poor patient prognosis and promotes tumor metastasis in osteosarcoma. Int J Biol Markers:0.  https://doi.org/10.5301/jbm.5000240
  176. 176.
    Uzan VR, Lengert A, Boldrini É, Penna V, Scapulatempo-Neto C, Scrideli CA, Filho AP, Cavalcante CE, de Oliveira CZ, Lopes LF, Vidal DO (2016) High expression of HULC is associated with poor prognosis in osteosarcoma patients. PLoS One 11(6):e0156774.  https://doi.org/10.1371/journal.pone.0156774 PubMedPubMedCentralGoogle Scholar
  177. 177.
    Ju L, Zhou YM, Yang GS (2016) Up-regulation of long non-coding RNA BCAR4 predicts a poor prognosis in patients with osteosarcoma, and promotes cell invasion and metastasis. Eur Rev Med Pharmacol Sci 20(21):4445–4451PubMedGoogle Scholar
  178. 178.
    Gao KT, Lian D (2016) Long non-coding RNA MALAT1 is an independent prognostic factor of osteosarcoma. Eur Rev Med Pharmacol Sci 20(17):3561–3565PubMedGoogle Scholar
  179. 179.
    Sun XH, Yang LB, Geng XL, Wang R, Zhang ZC (2015) Increased expression of lncRNA HULC indicates a poor prognosis and promotes cell metastasis in osteosarcoma. Int J Clin Exp Pathol 8(3):2994–3000PubMedPubMedCentralGoogle Scholar
  180. 180.
    Li F, Cao L, Hang D, Wang F, Wang Q (2015) Long non-coding RNA HOTTIP is up-regulated and associated with poor prognosis in patients with osteosarcoma. Int J Clin Exp Pathol 8(9):11414–11420PubMedPubMedCentralGoogle Scholar
  181. 181.
    Liu W, Zhang J, Zou C, Xie X, Wang Y, Wang B, Zhao Z, Tu J, Wang X, Li H, Shen J, Yin J (2017) Microarray expression profile and functional analysis of circular RNAs in osteosarcoma. Cell Physiol Biochem 43(3):969–985.  https://doi.org/10.1159/000481650 PubMedGoogle Scholar
  182. 182.
    Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B (2018) Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol 233(8):5574–5588.  https://doi.org/10.1002/jcp.26514
  183. 183.
    Fernandez-Piñeiro I, Badiola I, Sanchez A (2017) Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv.  https://doi.org/10.1016/j.biotechadv.2017.03.002
  184. 184.
    Park JH, Theodoratou E, Calin GA, Shin JI (2016) From cell biology to immunology: controlling metastatic progression of cancer via microRNA regulatory networks. Oncoimmunology 5(11):e1230579.  https://doi.org/10.1080/2162402x.2016.1230579 PubMedPubMedCentralGoogle Scholar
  185. 185.
    Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2016) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs.  https://doi.org/10.1007/s10637-016-0407-y
  186. 186.
    Lopez CM, Yu PY, Zhang X, Yilmaz AS, London CA, Fenger JM (2018) MiR-34a regulates the invasive capacity of canine osteosarcoma cell lines. PLoS One 13(1):e0190086.  https://doi.org/10.1371/journal.pone.0190086 PubMedPubMedCentralGoogle Scholar
  187. 187.
    Wen J, Zhao YK, Liu Y, Zhao JF (2017) MicroRNA-34a inhibits tumor invasion and metastasis in osteosarcoma partly by effecting C-IAP2 and Bcl-2. Tumour Biol 39(6):1010428317705761.  https://doi.org/10.1177/1010428317705761 PubMedGoogle Scholar
  188. 188.
    Pu Y, Zhao F, Wang H, Cai S (2017) MiR-34a-5p promotes multi-chemoresistance of osteosarcoma through down-regulation of the DLL1 gene. Sci Rep 7:44218.  https://doi.org/10.1038/srep44218 PubMedPubMedCentralGoogle Scholar
  189. 189.
    Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW (2016) PDL1 regulation by p53 via miR-34. J Natl Cancer Inst 108(1).  https://doi.org/10.1093/jnci/djv303
  190. 190.
    Vijayan D, Young A, Teng MWL, Smyth MJ (2017) Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer.  https://doi.org/10.1038/nrc.2017.86
  191. 191.
    Gebert LF, Rebhan MA, Crivelli SE, Denzler R, Stoffel M, Hall J (2014) Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 42(1):609–621.  https://doi.org/10.1093/nar/gkt852 PubMedGoogle Scholar
  192. 192.
    Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694.  https://doi.org/10.1056/NEJMoa1209026 PubMedGoogle Scholar
  193. 193.
    Kong D, Wang Y (2017) Knockdown of lncRNA HULC inhibits proliferation, migration, invasion and promotes apoptosis by sponging miR-122 in osteosarcoma. J Cell Biochem.  https://doi.org/10.1002/jcb.26273
  194. 194.
    Xiao F, Chen J, Lian C, Han P, Zhang C (2015) Tumor necrosis factor-related apoptosis-inducing ligand induces cytotoxicity specific to osteosarcoma by microRNA response elements. Mol Med Rep 11(1):739–745.  https://doi.org/10.3892/mmr.2014.2710 PubMedGoogle Scholar
  195. 195.
    Ma J, Wu Q, Zhang Y, Li J, Yu Y, Pan Q, Sun F (2014) MicroRNA sponge blocks the tumor-suppressing functions of microRNA-122 in human hepatoma and osteosarcoma cells. Oncol Rep 32(6):2744–2752.  https://doi.org/10.3892/or.2014.3517 PubMedGoogle Scholar
  196. 196.
    Ghosh N, Katare R (2018) Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol 17(1):43.  https://doi.org/10.1186/s12933-018-0684-1 PubMedPubMedCentralGoogle Scholar
  197. 197.
    Suter SR, Ball-Jones A, Mumbleau MM, Valenzuela R, Ibarra-Soza J, Owens H, Fisher AJ, Beal PA (2017) Controlling miRNA-like off-target effects of an siRNA with nucleobase modifications. Org Biomol Chem.  https://doi.org/10.1039/c7ob02654d
  198. 198.
    Van Roosbroeck K, Calin GA (2017) Cancer hallmarks and MicroRNAs: the therapeutic connection. Adv Cancer Res 135:119–149.  https://doi.org/10.1016/bs.acr.2017.06.002 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of OncologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
  2. 2.Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina

Personalised recommendations