Investigational New Drugs

, Volume 35, Issue 5, pp 566–575 | Cite as

Decorin gene upregulation mediated by an adeno-associated virus vector increases intratumoral uptake of nab-paclitaxel in neuroblastoma via inhibition of stabilin-1

  • Zijun ZhenEmail author
  • Kaibin Yang
  • Litong Ye
  • Zhiyao You
  • Rirong Chen
  • Ying Liu


The availability of effective medication for the treatment of refractory or recurrent neuroblastoma remains limited. This study sought to investigate the effects of increased decorin (DCN) expression on the intratumoral uptake of nab-paclitaxel as a potential novel approach to NB. Correlation between the clinical characteristics of neuroblastoma and the expression of DCN, secreted protein acidic and rich in cysteine (SPARC) and stabilin-1 was evaluated. The anticancer effect of recombinant adeno-associated virus-DCN (rAAV-DCN) was assessed in vivo and in vitro. And the effect of rAAV-DCN on the intratumoral uptake of paclitaxel was also studied in neuroblastoma-grafted nude mice. Overall, 12.5%, 17.7%, and 71.9% of the tumors stained positive for DCN, SPARC and stabilin-1 respectively and correlated to age, stage and N-MYC status in 96 children and adolescents with neuroblastoma. Transfected neuroblastoma cells stably expressed DCN, with in vivo and in vitro studies demonstrating rAAV-DCN sensitized the anticancer effect of nab-paclitaxel. Systemic rAAV-DCN in neuroblastoma-grafted nude mice inhibited stabilin-1, up-regulated SPARC, and increased the intratumoral uptake of paclitaxel. Macrophage depletion or anti-stabilin-1 monoclonal antibody increased the intratumoral uptake of nab-paclitaxel and its anticancer effects to a degree comparable to that achieved by systemic rAAV-DCN. The systemic administration of rAAV-DCN up-regulates DCN in neuroblastoma and accelerates the intratumoral uptake of nab-paclitaxel by inhibiting stabilin-1 mediated SPARC degradation.


Neuroblastoma Chemotherapy Decorin Paclitaxel Gene therapy 



The authors would like to thank all the patients who participated in this study and their families, as well as staff at all investigational sites. The authors would also like to thank Dr. Youjian He participated in study design, data analysis and data interpretation of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Compliance with ethical standards

Conflict of interest

All authors have no conflicts of interest to disclose.


This study was supported by a grant from the Science and Technology Planning Project of Guangdong Province, China (2012B031800460 and 2013B021800069). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained for all individual participants included in the study.


  1. 1.
    Cheung NK, Cheung IY, Kushner BH, Ostrovnaya I, Chamberlain E, Kramer K, Modak S (2012) Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol 30(26):3264–3270CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kreissman SG, Seeger RC, Matthay KK, London WB, Sposto R, Grupp SA, Haas-Kogan DA, Laquaglia MP, Yu AL, Diller L, Buxton A, Park JR, Cohn SL, Maris JM, Reynolds CP, Villablanca JG (2013) Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol 14(10):999–1008CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yoo SY, Kim JS, Sung KW, Jeon TY, Choi JY, Moon SH, Son MH, Lee SH, Yoo KH, Koo HH (2013) The degree of tumor volume reduction during the early phase of induction chemotherapy is an independent prognostic factor in patients with high-risk neuroblastoma. Cancer 119(3):656–664CrossRefPubMedGoogle Scholar
  4. 4.
    Saulnier Sholler GL, Bond JP, Bergendahl G, Dutta A, Dragon J, Neville K, Ferguson W, Roberts W, Eslin D, Kraveka J, Kaplan J, Mitchell D, Parikh N, Merchant M, Ashikaga T, Hanna G, Lescault PJ, Siniard A, Corneveaux J, Huentelman M, Trent J (2015) Feasibility of implementing molecular-guided therapy for the treatment of patients with relapsed or refractory neuroblastoma. Cancer Med 4(6):871–886CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kretschmar CS, Kletzel M, Murray K, Thorner P, Joshi V, Marcus R, Smith EI, London WB, Castleberry R (2004) Response to paclitaxel, topotecan, and topotecan-cyclophosphamide in children with untreated disseminated neuroblastoma treated in an upfront phase II investigational window: a pediatric oncology group study. J Clin Oncol 22(20):4119–4126CrossRefPubMedGoogle Scholar
  6. 6.
    Zhen Z, Sun X, He Y, Cai Y, Wang J, Guan Z (2011) The sequence of drug administration influences the antitumor effects of bevacizumab and cyclophosphamide in a neuroblastoma model. Med Oncol 28(Suppl 1):S619–S625CrossRefPubMedGoogle Scholar
  7. 7.
    Desai NP, Trieu V, Hwang LY, Wu R, Soon-Shiong P, Gradishar WJ (2008) Improved effectiveness of nanoparticle albumin-bound (nab) paclitaxel versus polysorbate-based docetaxel in multiple xenografts as a function of HER2 and SPARC status. Anti-Cancer Drugs 19(9):899–909CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang L, Marrano P, Kumar S, Leadley M, Elias E, Thorner P, Baruchel S (2013) Nab-paclitaxel is an active drug in preclinical model of pediatric solid tumors. Clin Cancer Res 19(21):5972–5983CrossRefPubMedGoogle Scholar
  9. 9.
    Houghton PJ, Kurmasheva RT, Kolb EA, Gorlick R, Maris JM, Wu J, Tong Z, Arnold MA, Chatterjee M, Williams TM, Smith MA (2015) Initial testing (stage 1) of the tubulin binding agent nanoparticle albumin-bound (nab) paclitaxel (Abraxane(®)) by the pediatric preclinical testing program (PPTP). Pediatr Blood Cancer 62(7):1214–1221CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kim H, Samuel S, Lopez-Casas P, Grizzle W, Hidalgo M, Kovar J, Oelschlager D, Zinn K, Warram J, Buchsbaum D (2016) SPARC-independent delivery of nab-paclitaxel without depleting tumor stroma in patient-derived pancreatic cancer xenografts. Mol Cancer Ther 15(4):680–688CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chlenski A, Cohn SL (2010) Modulation of matrix remodeling by SPARC in neoplastic progression. Semin Cell Dev Biol 21(1):55–65CrossRefPubMedGoogle Scholar
  12. 12.
    Cheetham S, Tang MJ, Mesak F, Kennecke H, Owen D, Tai IT (2008) SPARC promoter hypermethylation in colorectal cancers can be reversed by 5-Aza-2'deoxycytidine to increase SPARC expression and improve therapy response. Br J Cancer 98(11):1810–1819CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang E, Kang HJ, Koh KH, Rhee H, Kim NK, Kim H (2007) Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. Int J Cancer 121(3):567–575CrossRefPubMedGoogle Scholar
  14. 14.
    Suzuki M, Hao C, Takahashi T, Shigematsu H, Shivapurkar N, Sathyanarayana UG, Iizasa T, Fujisawa T, Hiroshima K, Gazdar AF (2005) Aberrant methylation of SPARC in human lung cancers. Br J Cancer 92(5):942–948CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tai IT, Tang MJ (2008) SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 11(6):231–246CrossRefPubMedGoogle Scholar
  16. 16.
    Chlenski A, Liu S, Crawford SE, Volpert OV, DeVries GH, Evangelista A, Yang Q, Salwen HR, Farrer R, Bray J, Cohn SL (2002) SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res 62(24):7357–7363PubMedGoogle Scholar
  17. 17.
    Zafiropoulos A, Tzanakakis GN (2008) Decorin-mediated effects in cancer cell biology. Connect Tissue Res 49(3):244–248CrossRefPubMedGoogle Scholar
  18. 18.
    Shi YF, Zhang Q, Cheung PY, Shi L, Fong CC, Zhang Y, Tzang CH, Chan BP, Fong WF, Chun J, Kung HF, Yang M (2006) Effects of rhDecorin on TGF-beta1 induced human hepatic stellate cells LX-2 activation. Biochim Biophys Acta 1760(11):1587–1595CrossRefPubMedGoogle Scholar
  19. 19.
    Bozoky B, Savchenko A, Guven H, Ponten F, Klein G, Szekely L (2014) Decreased decorin expression in the tumor microenvironment. Cancer Med 3(3):485–491CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Reed CC, Waterhouse A, Kirby S, Kay P, Owens RT, McQuillan DJ, Iozzo RV (2005) Decorin prevents metastatic spreading of breast cancer. Oncogene 24(6):1104–1110CrossRefPubMedGoogle Scholar
  21. 21.
    Henke A, Grace OC, Ashley GR, Stewart GD, Riddick AC, Yeun H, O'Donnell M, Anderson RA, Thomson AA (2012) Stromal expression of decorin, Semaphorin6D, SPARC, Sprouty1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer. PLoS One 7(8):e42516CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Arnold SA, Rivera LB, Miller AF, Carbon JG, Dineen SP, Xie Y, Castrillon DH, Sage EH, Puolakkainen P, Bradshaw AD, Brekken RA (2010) Lack of host SPARC enhances vascular function and tumor spread in an orthotopic murine model of pancreatic carcinoma. Dis Model Mech 3(1–2):57–72CrossRefPubMedGoogle Scholar
  23. 23.
    Kzhyshkowska J, Workman G, Cardó-Vila M, Arap W, Pasqualini R, Gratchev A, Krusell L, Goerdt S, Sage EH (2006) Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC. J Immunol 176(10):5825–5832CrossRefPubMedGoogle Scholar
  24. 24.
    David C, Nance JP, Hubbard J, Hsu M, Binder D, Wilson EH (2012) Stabilin-1 expression in tumor associated macrophages. Brain Res 1481C:71–78CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Williams KJ, Qiu G, Usui HK, Dunn SR, McCue P, Bottinger E, Iozzo RV, Sharma K (2007) Decorin deficiency enhances progressive nephropathy in diabetic mice. Am J Pathol 171(5):1441–1450CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    World Medical Association (2013) World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310(20):2191–2194CrossRefGoogle Scholar
  27. 27.
    Zhen Z, Guo X, Liao R, Yang K, Ye L, You Z (2016) Involvement of IL-10 and TGF-β in HLA-E-mediated neuroblastoma migration and invasion. Oncotarget 7(28):44340–44349CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ratajczak-Wielgomas K, Gosk J, Rabczyński J, Augoff K, Podhorska-Okołów M, Gamian A, Rutowski R (2012) Expression of MMP-2, TIMP-2, TGF-β1, and decorin in Dupuytren's contracture. Connect Tissue Res 53(6):469–477CrossRefPubMedGoogle Scholar
  29. 29.
    Chaudhary K, Moore H, Tandon A, Gupta S, Khanna R, Mohan RR (2014) Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis. Am J Physiol Ren Physiol 307(7):F777–F782CrossRefGoogle Scholar
  30. 30.
    Sun JY, Sun Y, Wu HJ, Zhang HX, Zhao ZH, Chen Q, Zhang ZG (2012) Transgene therapy for rat anti-Thy1.1 glomerulonephritis via mesangial cell vector with a polyethylenimine/decorin nanocomplex. Nanoscale res Lett 7 (1): 451.Google Scholar
  31. 31.
    Shi X, Liang W, Yang W, Xia R, Song Y (2015) Decorin is responsible for progression of non-small-cell lung cancer by promoting cell proliferation and metastasis. Tumour Biol 36(5):3345–3354CrossRefPubMedGoogle Scholar
  32. 32.
    Gao M, Xu Y, Qiu L (2015) Enhanced combination therapy effect on paclitaxel-resistant carcinoma by chloroquine co-delivery via liposomes. Int J Nanomedicine 10:6615–6632PubMedPubMedCentralGoogle Scholar
  33. 33.
    Stolzenburg N, Breinl J, Bienek S, Jaguszewski M, Löchel M, Taupitz M, Speck U, Wagner S, Schnorr J (2016) Paclitaxel-coated balloons: investigation of drug transfer in healthy and atherosclerotic arteries - first experimental results in rabbits at low inflation pressure. Cardiovasc Drugs Ther 30(3):263–270CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Martín-Fernández B, Rubio-Navarro A, Cortegano I, Ballesteros S, Alía M, Cannata-Ortiz P, Olivares-Álvaro E, Egido J, de Andrés B, Gaspar ML, de Las HN, Lahera V, Moreno JA (2016) Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats. PLoS One 11(1):e0145946CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ma HI, Hueng DY, Shui HA, Han JM, Wang CH, Lai YH, Cheng SY, Xiao X, Chen MT, Yang YP (2014) Intratumoral decorin gene delivery by AAV vector inhibits brain glioblastomas and prolongs survival of animals by inducing cell differentiation. Int J Mol Sci 15(3):4393–4414CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xu W, Neill T, Yang Y, Hu Z, Cleveland E, Wu Y, Hutten R, Xiao X, Stock SR, Shevrin D, Kaul K, Brendler C, Iozzo RV, Seth P (2015) The systemic delivery of an oncolytic adenovirus expressing decorin inhibits bone metastasis in a mouse model of human prostate cancer. Gene Ther 22(3):31–40CrossRefGoogle Scholar
  37. 37.
    Biaoxue R, Xiguang C, Hua L, Hui M, Shuanying Y, Wei Z, Wenli S, Jie D (2011) Decreased expression of decorin and p57(KIP2) correlates with poor survival and lymphatic metastasis in lung cancer patients. Int J Biol Markers 26(1):9–21CrossRefPubMedGoogle Scholar
  38. 38.
    Clément N, Grieger JC (2016) Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev 3:16002CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Rey-Rico A, Cucchiarini M (2016) Controlled release strategies for rAAV-mediated gene delivery. Acta Biomater 29:1–10CrossRefPubMedGoogle Scholar
  40. 40.
    Untch M, Jackisch C, Schneeweiss A, Conrad B, Aktas B, Denkert C, Eidtmann H, Wiebringhaus H, Kümmel S, Hilfrich J, Warm M, Paepke S, Just M, Hanusch C, Hackmann J, Blohmer JU, Clemens M, Darb-Esfahani S, Schmitt WD, Dan Costa S, Gerber B, Engels K, Nekljudova V, Loibl S, von Minckwitz G, German Breast Group (GBG), Arbeitsgemeinschaft Gynäkologische Onkologie—Breast (AGO-B) Investigators (2016) Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, phase 3 trial. Lancet Oncol 17(3):345–356CrossRefPubMedGoogle Scholar
  41. 41.
    Lindner JL, Loibl S, Denkert C, Ataseven B, Fasching PA, Pfitzner BM, Gerber B, Gade S, Darb-Esfahani S, Sinn BV, Huober J, Engels K, Tesch H, Karn T, Pommerenke F, Liedtke C, Untch M, Müller V, Rack B, Schem C, von Minckwitz G (2015) Expression of secreted protein acidic and rich in cysteine (SPARC) in breast cancer and response to neoadjuvant chemotherapy. Ann Oncol 26(1):95–100CrossRefPubMedGoogle Scholar
  42. 42.
    Chlenski A, Guerrero LJ, Peddinti R, Spitz JA, Leonhardt PT, Yang Q, Tian Y, Salwen HR, Cohn SL (2010) Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors. Mol Cancer 9:138–147CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hashimoto O, Yoshida M, Koma YI, Yanai T, Hasegawa D, Kosaka Y, Nishimura N, Yokozaki H.J (2016) Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol 240 (2): 211–223.Google Scholar
  44. 44.
    Workman G, Sage EH (2011) Identification of a sequence in the matricellular protein SPARC that interacts with the scavenger receptor stabilin-1. J Cell Biochem 112(4):1003–1008CrossRefPubMedGoogle Scholar
  45. 45.
    Liu S, Tian Y, Chlenski A, Yang Q, Salwen HR, Cohn SL (2005) 'Cross-talk' between Schwannian stroma and neuroblasts promotes neuroblastoma tumor differentiation and inhibits angiogenesis. Cancer Lett 228(1–2):125–1231CrossRefPubMedGoogle Scholar
  46. 46.
    Streck CJ, Zhang Y, Zhou J, Ng C, Nathwani AC, Davidoff AM (2005) Adeno-associated virus vector-mediated delivery of pigment epithelium-derived factor restricts neuroblastoma angiogenesis and growth. J Pediatr Surg 40(1):236–243CrossRefPubMedGoogle Scholar
  47. 47.
    Xu T, Xiao X, Zheng S, Zheng J, Zhu H, Ji Y, Yang S (2013) Antiangiogenic effect of propranolol on the growth of the neuroblastoma xenografts in nude mice. J Pediatr Surg 48(12):2460–2465CrossRefPubMedGoogle Scholar
  48. 48.
    Köninger J, Giese NA, Bartel M, di Mola FF, Berberat PO, di Sebastiano P, Giese T, Büchler MW, Friess H (2006) The ECM proteoglycan decorin links desmoplasia and inflammation in chronic pancreatitis. J Clin Pathol 59(1):21–27CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Merline R, Moreth K, Beckmann J, Nastase MV, Zeng-Brouwers J, Tralhão JG, Lemarchand P, Pfeilschifter J, Schaefer RM, Iozzo RV, Schaefer L (2011) Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21. Sci signal 4 (199): ra75.Google Scholar
  50. 50.
    Han MW, Lee JC, Park SY, Kim YM, Cho KJ, Kim SW, Lee M, Nam SY, Kim IS, Kim SY (2016) Homotypic interaction of Stabilin-2 plays a critical role in lymph node metastasis of tongue cancer. Anticancer Res 36(12):6611–6618CrossRefPubMedGoogle Scholar
  51. 51.
    Géraud C, Mogler C, Runge A, Evdokimov K, Lu S, Schledzewski K, Arnold B, Hämmerling G, Koch PS, Breuhahn K, Longerich T, Marx A, Weiss C, Damm F, Schmieder A, Schirmacher P, Augustin HG, Goerdt S (2013) Endothelial transdifferentiation in hepatocellular carcinoma: loss of Stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver Int 33(9):1428–1440CrossRefPubMedGoogle Scholar
  52. 52.
    Boström MM, Irjala H, Mirtti T, Taimen P, Kauko T, Ålgars A, Jalkanen S, Boström PJ (2015) Tumor-associated macrophages provide significant prognostic information in urothelial bladder cancer. PLoS One 10(7):e0133552CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Oncology in South ChinaGuangzhouChina
  2. 2.Department of Pediatric OncologySun Yat-sen University Cancer CenterGuangzhouChina
  3. 3.Collaborative Innovation Center of Cancer MedicineGuangzhouChina
  4. 4.Sun Yat-sen University Zhongshan School of MedicineGuangzhouChina

Personalised recommendations