Investigational New Drugs

, Volume 35, Issue 4, pp 509–517 | Cite as

Lung cancer and β-glucans: review of potential therapeutic applications

  • Raheleh Roudi
  • Shahla Roudbar Mohammadi
  • Maryam Roudbary
  • Monireh Mohsenzadegan


The potential of natural substances with immunotherapeutic properties has long been studied. β-glucans, a cell wall component of certain bacteria and fungi, potentiate the immune system against microbes and toxic substances. Moreover, β-glucans are known to exhibit direct anticancer effects and can suppress cancer proliferation through immunomodulatory pathways. Mortality of lung cancer has been alarmingly increasingly worldwide; therefore, treatment of lung cancer is an urgent necessity. Numerous researchers are now dedicated to using β-glucans as a therapy for lung cancer. In the present attempt, we have reviewed the studies addressing therapeutic effects of β-glucans in primary and metastatic lung cancer published in the time period of 1991–2016.


Lung cancer β-glucans Immunomodulatory activity Drug resistance 


Compliance with ethical standards

Conflict of interest

Raheleh Roudi declares that she has no conflict of interest.

Shahla Roudbar Mohammadi declares that she has no conflict of interest.

Maryam Roudbary declares that she has no conflict of interest.

Monireh Mohsenzadegan declares that she has no conflict of interest.



Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30. doi: 10.3322/caac.21332 CrossRefPubMedGoogle Scholar
  2. 2.
    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. doi: 10.3322/caac.21262 CrossRefPubMedGoogle Scholar
  3. 3.
    Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380. doi: 10.1056/NEJMra0802714 CrossRefPubMedGoogle Scholar
  4. 4.
    Youlden DR, Cramb SM, Baade PD (2008) The international epidemiology of lung cancer: geographical distribution and secular trends. J Thorac Oncol 3:819–831. doi: 10.1097/JTO.0b013e31818020eb CrossRefPubMedGoogle Scholar
  5. 5.
    Scott WJ, Howington J, Feigenberg S, Movsas B, Pisters K (2007) Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:234s–42s. doi:  10.1378/chest.07-1378
  6. 6.
    Robinson LA, Ruckdeschel JC, Wagner H, Stevens CW (2007) Treatment of non-small cell lung cancer-stage IIIA: ACCP evidence-based clinical practice guidelines. Chest 132:243S–265S. doi: 10.1378/chest.07-1379 CrossRefPubMedGoogle Scholar
  7. 7.
    Lardinois D, Suter H, Hakki H, Rousson V, Betticher D, Ris H-B (2005) Morbidity, survival, and site of recurrence after mediastinal lymph-node dissection versus systematic sampling after complete resection for non-small cell lung cancer. Ann Thorac Surg 80:268–275. doi: 10.1016/j.athoracsur.2005.02.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Reck M, Heigener DF, Mok T, Soria J-C, Rabe KF (2013) Management of non-small-cell lung cancer: recent developments. Lancet 382:709–719. doi: 10.1016/S0140-6736(13)61502-0 CrossRefPubMedGoogle Scholar
  9. 9.
    Afanasjeva J, Hui RL, Spence MM, Chang J, Schottinger JE, Millares M, Rashid N (2016) Identifying subsequent therapies in patients with advanced non–small cell lung cancer and factors associated with overall survival. Pharmacotherapy 36:1065–1074. doi: 10.1002/phar.1826 CrossRefPubMedGoogle Scholar
  10. 10.
    Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 11:47–76. doi: 10.1146/annurev-pathol-012615-044438 CrossRefPubMedGoogle Scholar
  11. 11.
    Soltanian S, Matin MM (2011) Cancer stem cells and cancer therapy. Tumour Biol 32:425–440. doi: 10.1007/s13277-011-0155-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Roudi R, Madjd Z, Ebrahimi M, Najafi A, Korourian A, Shariftabrizi A, Samadikuchaksaraei A (2016) Evidence for embryonic stem-like signature and epithelial-mesenchymal transition features in the spheroid cells derived from lung adenocarcinoma. Tumour Biol 37:11843–11859. doi: 10.1007/s13277-016-5041-y CrossRefPubMedGoogle Scholar
  13. 13.
    Roudi R, Korourian A, Shariftabrizi A, Madjd Z (2015) Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes. Cancer Investig 33:294–302. doi: 10.3109/07357907.2015.1034869 CrossRefGoogle Scholar
  14. 14.
    Roudi R, Madjd Z, Korourian A, Mehrazma M, Molanae S, Sabet MN, Shariftabrizi A (2014a) Clinical significance of putative cancer stem cell marker CD44 in different histological subtypes of lung cancer. Cancer Biomark 14:457–467. doi: 10.3233/CBM-140424 CrossRefPubMedGoogle Scholar
  15. 15.
    Roudi R, Madjd Z, Ebrahimi M, Samani FS, Samadikuchaksaraei A (2014b) CD44 and CD24 cannot act as cancer stem cell markers in human lung adenocarcinoma cell line A549. Cell Mol Biol Lett 19:23–36. doi: 10.2478/s11658-013-0112-1 CrossRefPubMedGoogle Scholar
  16. 16.
    O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110. doi: 10.1038/nature05372 CrossRefPubMedGoogle Scholar
  17. 17.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951. doi: 10.1158/0008-5472.CAN-05-2018 CrossRefPubMedGoogle Scholar
  18. 18.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988. doi: 10.1073/pnas.0530291100 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li F, Zhou K, Gao L, Zhang B, Li W, Yan W (2016) Radiation induces the generation of cancer stem cells: a novel mechanism for cancer radioresistance. Oncol Lett 12:3059–3065. doi: 10.3892/ol.2016.5124 PubMedPubMedCentralGoogle Scholar
  20. 20.
    Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, Laino L, De Francesco F, Papaccio G (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27:13–24. doi: 10.1096/fj.12-218222 CrossRefPubMedGoogle Scholar
  21. 21.
    Luo J, Shen L, Zheng D (2014) Association between vitamin C intake and lung cancer: a dose-response meta-analysis. Sci Rep 4:6161. doi: 10.1038/srep06161 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang L, Wang S, Che X, Li X (2015) Vitamin D and lung cancer risk: a comprehensive review and meta-analysis. Cell Physiol Biochem 36:299–305. doi: 10.1159/000374072 CrossRefPubMedGoogle Scholar
  23. 23.
    Aleem E (2013) β-glucans andtheir applications in cancer therapy: focus on human studies. Anti Cancer Agents Med Chem 13:709–719Google Scholar
  24. 24.
    Tokunaka K, Ohno N, Adachi Y, Miura NN, Yadomae T (2002) Application of Candida solubilized cell wall β-glucan in antitumor immunotherapy against P815 mastocytoma in mice. Int Immunopharmacol 2:59–67CrossRefPubMedGoogle Scholar
  25. 25.
    Tokunaka K, Ohno N, Adachi Y, Tanaka S, Tamura H, Yadomae T (2000) Immunopharmacological and immunotoxicological activities of a water-soluble (1→ 3)-β-d-glucan, CSBG from Candida spp. Int J Immunopharmacol 22:383–394CrossRefPubMedGoogle Scholar
  26. 26.
    Baur S, Geisler G (1996) Variability of the beta-glucan content in oat caryopsis of 132 cultivated-oat genotypes and 39 wild-oat genotypes. J Agron Crop Sci 176:151–157Google Scholar
  27. 27.
    Borchers AT, Keen CL, Gershwin ME (2004) Mushrooms, tumors, and immunity: an update. Exp Biol Med (Maywood) 229:393–406Google Scholar
  28. 28.
    Wasser S (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274. doi: 10.1007/s00253-002-1076-7 CrossRefPubMedGoogle Scholar
  29. 29.
    Chan WK, Lam DTW, Law HKW, Wong WT, Leung Koo MW, Lau ASY, Chan GC (2005) Ganoderma lucidum mycelium and spore extracts as natural adjuvants for immunotherapy. J Altern Complement Med 11:1047–1057. doi: 10.1089/acm.2005.11.1047 CrossRefPubMedGoogle Scholar
  30. 30.
    Vetvicka V, Dvorak B, Vetvickova J, Richter J, Krizan J, Sima P, Yvin JC (2007) Orally administered marine (1→ 3)-β-D-glucan Phycarine stimulates both humoral and cellular immunity. Int J Biol Macromol 40:291–298CrossRefPubMedGoogle Scholar
  31. 31.
    Driscoll M, Hansen R, Ding C, Cramer DE, Yan J (2009) Therapeutic potential of various β-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol Ther 8:218–225CrossRefPubMedGoogle Scholar
  32. 32.
    Brown GD, Gordon S (2003) Fungal β-glucans and mammalian immunity. Immunity 19:311–315CrossRefPubMedGoogle Scholar
  33. 33.
    Ishibashi K-I, Miura NN, Adachi Y, Ohno N, Yadomae T (2001) Relationship between solubility of grifolan, a fungal 1, 3-β-D-glucan, and production of tumor necrosis factor by macrophages in vitro. Biosci Biotechnol Biochem 65:1993–2000CrossRefPubMedGoogle Scholar
  34. 34.
    Lee D-Y, Ji I-H, Chang H-I, C-W KIM (2002) High-level TNF-α secretion and macrophage activity with soluble β-glucans from Saccharomyces cerevisiae. Biosci Biotechnol Biochem 66:233–238. doi: 10.1271/bbb.66.233 CrossRefPubMedGoogle Scholar
  35. 35.
    Ahmad A, Munir B, Abrar M, Bashir S, Adnan M, Tabassum T (2012) Perspective of β-glucan as functional ingredient for food industry. J Nutr Food Sci 2:2CrossRefGoogle Scholar
  36. 36.
    Gulcelik MA, Dincer H, Sahin D, Faruk DO, Yenidogan E, Alagol H (2010) Glucan improves impaired wound healing in diabetic rats. Wounds 22:12–16PubMedGoogle Scholar
  37. 37.
    Kim J-Y, Jun J-H, Kim S-J, Hwang K-M, Choi SR, Han SD, Son MW, Park ES (2015) Wound healing efficacy of a chitosan-based film-forming gel containing tyrothricin in various rat wound models. Arch Pharm Res 38:229–238. doi: 10.1007/s12272-014-0368-7 CrossRefPubMedGoogle Scholar
  38. 38.
    Delatte SJ, Evans J, Hebra A, Adamson W, Othersen HB, Tagge EP (2001) Effectiveness of beta-glucan collagen for treatment of partial-thickness burns in children. J Pediatr Surg 36:113–118. doi: 10.1053/jpsu.2001.20024 CrossRefPubMedGoogle Scholar
  39. 39.
    Cheung N-KV, Modak S, Vickers A, Knuckles B (2002) Orally administered β-glucans enhance anti-tumor effects of monoclonal antibodies. Cancer Immunol Immunother 51:557–564. doi: 10.1007/s00262-002-0321-3 PubMedGoogle Scholar
  40. 40.
    Huang H, Ostroff GR, Lee CK, Specht CA, Levitz SM (2013) Characterization and optimization of the glucan particle-based vaccine platform. Clin Vaccine Immunol 20(10):1585–1591. doi: 10.1128/CVI.00463-13 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rice PJ, Kelley JL, Kogan G, Ensley HE, Kalbfleisch JH, Browder IW, Williams DL (2002) Human monocyte scavenger receptors are pattern recognition receptors for (1→ 3)-β-D-glucans. J Leukoc Biol 72(1):140–146PubMedGoogle Scholar
  42. 42.
    Herre J, Gordon S, Brown GD (2004)Dectin-1 and its role in the recognition of β-glucans by macrophages. Mol Immunol 40:869–876CrossRefPubMedGoogle Scholar
  43. 43.
    Schorey J, Lawrence C (2008) Thepattern recognition receptor Dectin-1: from fungi to mycobacteria. Curr Drug Targets 9:123–129Google Scholar
  44. 44.
    Zimmerman JW, Lindermuth J, Fish PA, Palace GP, Stevenson TT, DeMong DE (1998) A novel carbohydrate-glycosphingolipid interaction between a β-(1–3)-glucan immunomodulator, PGG-glucan, and lactosylceramide of human leukocytes. J Biol Chem 273:22014–22020CrossRefPubMedGoogle Scholar
  45. 45.
    Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY (2002) The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169:3876–3882CrossRefPubMedGoogle Scholar
  46. 46.
    Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and toll-like receptor 2. J Exp Med 197:1107–1117CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yadav M, Schorey JS (2006) The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108:3168–3175. doi: 10.1182/blood-2006-05-024406 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rubin-Bejerano I, Abeijon C, Magnelli P, Grisafi P, Fink GR (2007) Phagocytosis by humanneutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe 2:55–67. doi: 10.1016/j.chom.2007.06.002
  49. 49.
    Goodridge HS, Simmons RM, Underhill DM (2007) Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 178:3107–3115CrossRefPubMedGoogle Scholar
  50. 50.
    Gross O, Gewies A, Finger K, Schäfer M, Sparwasser T, Peschel C, Förster I, Ruland J (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442:651–656. doi: 10.1038/nature04926 CrossRefPubMedGoogle Scholar
  51. 51.
    Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reisesousa C (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517. doi: 10.1016/j.immuni.2005.03.004 CrossRefPubMedGoogle Scholar
  52. 52.
    Roudbary M, Daneshmandi S, Hajimoradi M, Roudbarmohammadi S, Hassan ZM (2015) Immunomodulatory effect of β-glucan on peritoneal macrophages of Bab1/c mice. Pol J Microbiol 64:175–179PubMedGoogle Scholar
  53. 53.
    Kournikakis B, Mandeville R, Brousseau P, Ostroff G (2003) Anthrax-protective effects of yeast beta 1, 3 glucans. MedGenMed 5:1PubMedGoogle Scholar
  54. 54.
    Medeiros SD, Cordeiro SL, Cavalcanti JE, Melchuna KM, Lima AM, Filho IA, Medeiros AC, Rocha KB, Oliveira EM, Faria ED, Sassaki GL, Rocha HA, Sales VS (2012) Effects of purified Saccharomyces cerevisiae (1→ 3)-β-glucan on venous ulcer healing. Int J Mol Sci 13:8142–8158. doi: 10.3390/ijms13078142
  55. 55.
    McIntosh M, Stone B, Stanisich V (2005) Curdlan and other bacterial (1→ 3)-β-D-glucans. Appl Microbiol Biotechnol 68:163–173. doi: 10.1007/s00253-005-1959-5 CrossRefPubMedGoogle Scholar
  56. 56.
    Kidd PM (2000) The use of mushroom glucans and proteoglycans in cancer treatment. Altern Med Rev 5:4–27PubMedGoogle Scholar
  57. 57.
    Han S-SR, Cho C-K, Lee Y-W, Yoo H-S (2009) Antimetastatic and immunomodulating effect of water extracts from various mushrooms. J Acupunct Meridian Stud 2:218–227. doi: 10.1016/S2005-2901(09)60058-3 CrossRefPubMedGoogle Scholar
  58. 58.
    Kulicke W-M, Lettau AI, Thielking H (1997) Correlation between immunological activity, molar mass, and molecular structure of different (1→ 3)-β-D-glucans. Carbohydr Res 297:135–143CrossRefPubMedGoogle Scholar
  59. 59.
    Hazama S, Watanabe S, Ohashi M, Yagi M, Suzuki M, Matsuda K, Yamamoto T, Suga Y, Suga T, Nakazawa S, Oka M (2009) Efficacy of orally administered superfine dispersed lentinan (β-1, 3-glucan) for the treatment of advanced colorectal cancer. Anticancer Res 29:2611–2617PubMedGoogle Scholar
  60. 60.
    Demir G, Klein H, Mandel-Molinas N, Tuzuner N (2007) Beta glucan induces proliferation and activation of monocytes in peripheral blood of patients with advanced breast cancer. Int Immunopharmacol 7:113–116. doi: 10.1016/j.intimp.2006.08.011 CrossRefPubMedGoogle Scholar
  61. 61.
    Nasrollahi Z, Mohammadi SR, Mollarazi E, Yadegari MH, Hassan ZM, Talaei F, Dinarvand R, Akbari H, Atyabi F (2015) Functionalized nanoscale β-1, 3-glucan to improve Her2+ breast cancer therapy: in vitro and in vivo study. J Control Release 202:49–56. doi: 10.1016/j.jconrel.2015.01.014 CrossRefPubMedGoogle Scholar
  62. 62.
    Boscardin SB, Hafalla JC, Masilamani RF, Kamphorst AO, Zebroski HA, Rai U, Morrot A, Zavala F, Steinman RM, Nussenzweig RS, Nussenzweig MC (2006) Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J Exp Med 203:599–606. doi: 10.1084/jem.20051639 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Suzuki I, Sakurai T, Hashimoto K, Oikawa S, Masuda A, Ohsawa M, Yadomae T (1991) Inhibition of experimental pulmonary metastasis of Lewis lung carcinoma by orally administered beta-glucan in mice. Chem Pharm Bull (Tokyo) 39:1606–1608CrossRefGoogle Scholar
  64. 64.
    Yoon TJ, Kim TJ, Lee H, Shin KS, Yun YP, Moon WK, Kim DW, Lee KH (2008) Anti-tumor metastatic activity of β-glucan purified from mutated Saccharomyces cerevisiae. Int Immunopharmacol 8:36–42. doi: 10.1016/j.intimp.2007.10.005 CrossRefPubMedGoogle Scholar
  65. 65.
    Lin H, Cheung SW, Nesin M, Cassileth BR, Cunningham-Rundles S (2007) Enhancement of umbilical cord blood cell hematopoiesis by maitake beta-glucan is mediated by granulocyte colony-stimulating factor production. Clin Vaccine Immunol 14:21–27. doi: 10.1128/CVI.00284-06 CrossRefPubMedGoogle Scholar
  66. 66.
    Kobayashi H, Yoshida R, Kanada Y, Fukuda Y, Yagyu T, Inagaki K, Kondo T, Kurita N, Suzuki M, Kanayama N, Terao T (2005) Suppressing effects of daily oral supplementation of beta-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. J Cancer Res Clin Oncol 131:527–538. doi: 10.1007/s00432-005-0672-1 CrossRefPubMedGoogle Scholar
  67. 67.
    Yamamoto K, Kimura T, Sugitachi A, Matsuura N (2009) Anti-angiogenic and anti-metastatic effects of β-1, 3-D-glucan purified from Hanabiratake, Sparassis crispa. Biol Pharm Bull 32:259–263CrossRefPubMedGoogle Scholar
  68. 68.
    Li B, Cai Y, Qi C, Hansen R, Ding C, Mitchell TC, Yan J (2010) Orally administered particulate β-glucan modulates tumor-capturing dendritic cells and improves antitumor T-cell responses in cancer. Clin Cancer Res 16:5153–5164. doi: 10.1158/1078-0432.CCR-10-0820 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Queiroz EA, Fortes ZB, da Cunha MA, Barbosa AM, Khaper N, Dekker RF (2015) Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a. Int J Biochem Cell Biol 67:14–24. doi: 10.1016/j.biocel.2015.08.003 CrossRefPubMedGoogle Scholar
  70. 70.
    Kogan G, Šandula J, Korolenko TA, Falameeva OV, Poteryaeva ON, Zhanaeva SY, Levina OA, Filatova TG, Kaledin VI (2002) Increased efficiency of Lewis lung carcinoma chemotherapy with a macrophage stimulator—yeast carboxymethyl glucan. Int Immunopharmacol 2:775–781CrossRefPubMedGoogle Scholar
  71. 71.
    Vetvicka V, Vetvickova J (2012) Combination of glucan, resveratrol and vitamin C demonstrates strong anti-tumor potential. Anticancer Res 32:81–87PubMedGoogle Scholar
  72. 72.
    Friedenreich CM, Orenstein MR (2002) Physical activity and cancer prevention: etiologic evidence and biological mechanisms. J Nutr 132:3456S–3464SPubMedGoogle Scholar
  73. 73.
    Greenwald P, Clifford C, Milner J (2001) Diet and cancer prevention. Eur J Cancer 37:948–965CrossRefPubMedGoogle Scholar
  74. 74.
    Murphy E, Davis J, Brown AS, Carmichael MD, Mayer EP, Ghaffar A (2004) Effects of moderate exercise and oat β-glucan on lung tumor metastases and macrophage antitumor cytotoxicity. J Appl Physiol 97:955–959. doi: 10.1152/japplphysiol.00252.2004
  75. 75.
    Vrouenraets MB, Visser G, Snow G, Van Dongen G (2003) Basic principles, applications in oncology and improved selectivity of photodynamic therapy. Anticancer Res 23:505–522PubMedGoogle Scholar
  76. 76.
    Akramiene D, Aleksandraviciene C, Grazeliene G, Zalinkevicius R, Suziedelis K, Didziapetriene J, Simonsen U, Stankevicius E, Kevelaitis E (2010) Potentiating effect of β-glucans on photodynamic therapy of implanted cancer cells in mice. Tohoku J Exp Med 220:299–306CrossRefPubMedGoogle Scholar
  77. 77.
    Hong F, Yan J, Baran JT, Allendorf DJ, Hansen RD, Ostroff GR, Xing PX, Cheung NK, Ross GD (2004) Mechanism by which orally administered β-1, 3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol 173:797–806CrossRefPubMedGoogle Scholar
  78. 78.
    Li B, Allendorf DJ, Hansen R, Marroquin J, Cramer DE, Harris CL, Yan J (2007) Combined yeast β-glucan and antitumor monoclonal antibody therapy requires C5a-mediated neutrophil chemotaxis via regulation of decay-accelerating factor CD55. Cancer Res 67:7421–7430. doi: 10.1158/0008-5472.CAN-07-1465 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhong W, Hansen R, Li B, Cai Y, Salvador C, Moore GD, Yan J (2009) Effect of yeast-derived β-glucan in conjunction with bevacizumab for the treatment of human lung adenocarcinoma in subcutaneous and orthotopic xenograft models. J Immunother 32:703–712. doi: 10.1097/CJI.0b013e3181ad3fcf CrossRefPubMedGoogle Scholar
  80. 80.
    Vetvicka V, Vetvickova J (2015) Glucan supplementation has strong anti-melanoma effects: role of NK cells. Anticancer Res 35:5287–5292PubMedGoogle Scholar
  81. 81.
    Lo TC-T, Hsu F-M, Chang CA, Cheng JC-H (2011) Branched α-(1, 4) glucans from Lentinula edodes (L10) in combination with radiation enhance cytotoxic effect on human lung adenocarcinoma through the toll-like receptor 4 mediated induction of THP-1 differentiation/activation. J Agric Food Chem 59:11997–12005CrossRefPubMedGoogle Scholar
  82. 82.
    Byun EB, Park SH, Jang BS, Sung NY, Byun EH (2016) Gamma-irradiated β-glucan induces immunomodulation and anticancer activity through MAPK and NF-κB pathways. J Sci Food Agric 96:695–702. doi: 10.1002/jsfa.7215 CrossRefPubMedGoogle Scholar
  83. 83.
    Albeituni SH, Ding C, Liu M, Hu X, Luo F, Kloecker G, Bousamra M 2nd, Zhang HG, Yan J (2016) Yeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to apc in cancer. J Immunol 196:2167–2180. doi: 10.4049/jimmunol.1600346 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-Oncology 13:591–599. doi: 10.1093/neuonc/nor042 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, Lang S (2011) Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 89:311–317. doi: 10.1189/jlb.0310162 CrossRefPubMedGoogle Scholar
  86. 86.
    Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59. doi: 10.1007/s00262-008-0523-4 CrossRefPubMedGoogle Scholar
  87. 87.
    Iclozan C, Antonia S, Chiappori A, Chen D-T, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62:909–918. doi: 10.1007/s00262-013-1396-8 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kodama N, Komuta K, Nanba H (2002) Can maitake MD-fraction aid cancer patients? Altern Med Rev 7:236–239PubMedGoogle Scholar
  89. 89.
    Gao Y, Tang W, Dai X, Gao H, Chen G, Ye J, Chan E, Koh HL, Li X, Zhou S (2005) Effects of water-soluble Ganoderma lucidum polysaccharides on the immune functions of patients with advanced lung cancer. J Med Food 8:159–168CrossRefPubMedGoogle Scholar
  90. 90.
    Weitberg AB (2008) A phase I/II trial of beta-(1, 3)/(1, 6) D-glucan in the treatment of patients with advanced malignancies receiving chemotherapy. J Exp Clin Cancer Res 27:40. doi: 10.1186/1756-9966-27-40 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Oncopathology Research CenterIran University of Medical SciencesTehranIran
  2. 2.Department of Medical Mycology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  3. 3.Department of Medical Mycology and Parasitology, School of MedicineIran University of Medical SciencesTehranIran
  4. 4.Department of Medical Laboratory Science, Faculty of Allied Medical SciencesIran University of Medical SciencesTehranIran

Personalised recommendations