Advertisement

Investigational New Drugs

, Volume 34, Issue 5, pp 541–551 | Cite as

In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118

  • Eduardo J. Salustiano
  • Matheus L. Dumas
  • Gabriel G. Silva-Santos
  • Chaquip D. Netto
  • Paulo R. R. Costa
  • Vivian M. Rumjanek
PRECLINICAL STUDIES

Summary

Cancer is a malignancy of worldwide prevalence, and although new therapeutic strategies are under investigation, patients still resort to reductive or palliative chemotherapy. Side effects are a great concern, since treatment can render patients susceptible to infections or secondary cancers. Thus, design of safer chemotherapeutic drugs must consider the risk of immunotoxicity. Pterocarpans are natural isoflavones that possess immunomodulatory and antineoplastic properties. Ubiquitous in nature, quinones are present in chemotherapeutic drugs such as doxorubicin and mitoxantrone. Our group has patented a hybrid molecule, the pterocarpanquinone LQB-118, and demonstrated its antineoplastic effect in vitro. In this report we describe its antineoplastic effect in vivo and assess its toxicity toward the immune system. Treated mice presented no changes in weight of primary and secondary organs of the immune system nor their cellular composition. Immunophenotyping showed that treatment increased CD4+ thymocytes and proportionally reduced the CD4+CD8+ subpopulation in the thymus. No significant changes were observed in T CD8+ peripheral lymphocytes nor was the activation of fresh T cells affected after treatment. LQB-118 induced apoptosis in murine tumor cells in vitro, being synergistic with the autophagy promoter rapamycin. Furthermore, treatment significantly reduced ascites or solid Ehrlich and B16F10 melanoma growth in vivo, and ameliorated side effects such as cachexia. Based on its favorable preclinical profile and considering previous results obtained in vitro, this drug emerges as a promising candidate for further development.

Keywords

Pterocarpan Naphthoquinone Autophagy Immunotoxicity Ehrlich tumor Melanoma 

Notes

Acknowledgments

Authors are grateful to Prof. Alcides José Monteiro da Silva and Prof. Camilla Djenne Buarque Müller for participating in discussions and the preparing of LQB-118. We would also like to thank Dr. Ottilia Rodrigues Affonso-Mitidieri for useful suggestions in chemistry, Prof. Martha Meriwether Sorenson for reviewing the manuscript and Prof. Claudio Akio Masuda for his kind rapamycin donation. Research was supported by grants from: Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq; Financiadora de Estudos e Projetos – FINEP; Programa de Oncobiologia; Fundação do Câncer; Instituto Nacional de Ciência e Tecnologia para Controle do Câncer – INCT-Câncer, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro – FAPERJ; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES.

Compliance with ethical standards

Conflict of interest

LQB-118, compounds of the pterocarpanquinone family, methods for preparing the same, pharmaceutical compositions containing new compounds of the pterocarpanquinone family, uses and therapeutic methods are protected under patent number US8835489B2, assigned to the Federal University of Rio de Janeiro and granted by USPTO in 16–09-2014 [14]. Eduardo J. Salustiano, Chaquip D. Netto, Paulo R. Costa and Vivian M. Rumjanek are listed as inventors. Patent was not outlicenced and inventors did not receive money from private companies but grants from public agencies stated in Acknowledgments. Funding agencies had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. Procedures for animal experimentation were approved by the Centro de Ciências da Saúde Ethics Committee for Animal Use (CEUA-CCS, UFRJ) under protocol number IBQM082.

Supplementary material

10637_2016_359_MOESM1_ESM.pdf (871 kb)
ESM 1 (PDF 870 kb)
10637_2016_359_MOESM2_ESM.pdf (295 kb)
ESM 2 (PDF 295 kb)

References

  1. 1.
    Donnelly DMX, Boland GM (1995) Isoflavonoids and neoflavonoids: naturally occurring O-heterocycles. Nat Prod Rep 12:321. doi: 10.1039/np9951200321 CrossRefGoogle Scholar
  2. 2.
    Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding response of estrogen receptors alpha and beta to the estrogen response element. J Agric Food Chem 51:7632–7635. doi: 10.1021/jf034427b CrossRefPubMedGoogle Scholar
  3. 3.
    Zhou H, Lutterodt H, Cheng Z, Yu LL (2009) Anti-inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots. J Agric Food Chem 57:4580–4585. doi: 10.1021/jf900340b CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    da Silva AJ, Netto CD, Costa PR (2004) The first synthesis of (±)-3, 4-dihydroxy-8,9-methylenedioxypterocarpan, an antitumoral agent and its coumestan derivative. J Braz Chem Soc 15:979–981. doi: 10.1590/S0103-50532004000600029 CrossRefGoogle Scholar
  5. 5.
    Netto CD, Santos ES, Castro CP, da Silva AJ, Rumjanek VM, Costa PR (2009) (+/−)-3,4-dihydroxy-8,9-methylenedioxypterocarpan and derivatives: cytotoxic effect on human leukemia cell lines. Eur J Med Chem 44:920–925. doi: 10.1016/j.ejmech.2008.01.027 CrossRefPubMedGoogle Scholar
  6. 6.
    Kuete V, Sandjo LP, Djeussi DE, Zeino M, Kwamou GM, Ngadjui B, Efferth T (2014) Cytotoxic flavonoids and isoflavonoids from Erythrina Sigmoidea towards multi-factorial drug resistant cancer cells. Investig New Drugs 32:1053–1062. doi: 10.1007/s10637-014-0137-y CrossRefGoogle Scholar
  7. 7.
    Buarque CD, Salustiano EJ, Fraga KC, Alves BR, Costa PR (2014) 11a-N-Tosyl-5-deoxi-pterocarpan (LQB-223), a promising prototype for targeting MDR leukemia cell lines. Eur J Med Chem 78:190–197. doi: 10.1016/j.ejmech.2014.03.039 CrossRefPubMedGoogle Scholar
  8. 8.
    O'Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80:1–41. doi: 10.1016/0009-2797(91)90029-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Derenzini E, Casadei B, Broccoli A, Gandolfi L, Pellegrini C, Zinzani PL (2014) Sequential therapy with alternating short courses of R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone) and R-FM (rituximab, fludarabine, mitoxantrone) followed by autologous stem cell transplantation results in long term remission in advanced follicular lymphoma. Br J Haematol 166:625–628. doi: 10.1111/bjh.12894 CrossRefPubMedGoogle Scholar
  10. 10.
    Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A, Vonhof S, Bickeboller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nurnberg P, Pfreundschuh M, Trumper L, Brockmoller J, Hasenfuss G (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–3762. doi: 10.1161/CIRCULATIONAHA.105.576850 CrossRefPubMedGoogle Scholar
  11. 11.
    da Cunha-Junior EF, Pacienza-Lima W, Ribeiro GA, Netto CD, do Canto-Cavalheiro MM, da Silva AJ, Costa PR, Rossi-Bergmann B, Torres-Santos EC (2011) Effectiveness of the local or oral delivery of the novel naphthopterocarpanquinone LQB-118 against cutaneous leishmaniasis. J Antimicrob Chemother 66:1555–1559. doi: 10.1093/jac/dkr158 CrossRefPubMedGoogle Scholar
  12. 12.
    Salustiano EJ, Netto CD, Fernandes RF, da Silva AJ, Bacelar TS, Castro CP, Buarque CD, Maia RC, Rumjanek VM, Costa PR (2010) Comparison of the cytotoxic effect of lapachol, alpha-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Investig New Drugs 28:139–144. doi: 10.1007/s10637-009-9231-y CrossRefGoogle Scholar
  13. 13.
    Netto CD, da Silva AJ, Salustiano EJ, Bacelar TS, Rica IG, Cavalcante MC, Rumjanek VM, Costa PR (2010) New pterocarpanquinones: synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-alpha modulation in human PBMC cells. Bioorg Med Chem 18:1610–1616. doi: 10.1016/j.bmc.2009.12.073 CrossRefPubMedGoogle Scholar
  14. 14.
    Da Silva AJM, Rumjanek VMBD, Bergmann BR, Salustiano EJ, Costa PRR, Netto CD, Lima WP, Dos Santos ECT, Cavalcante MCM, Seabra SH (2014) Compounds of the pterocarpanquinone family, method for preparing the same, pharmaceutical composition containing the new compounds of the pterocarpanquinone family, uses and therapeutic method. United States Patent US8835489-B2, 16–09-2014 doi: 10.13140/RG.2.1.1944.7769
  15. 15.
    Martino T, Magalhaes FC, Justo GA, Coelho MG, Netto CD, Costa PR, Sabino KC (2014) The pterocarpanquinone LQB-118 inhibits tumor cell proliferation by downregulation of c-Myc and cyclins D1 and B1 mRNA and upregulation of p21 cell cycle inhibitor expression. Bioorg Med Chem 22:3115–3122. doi: 10.1016/j.bmc.2014.04.025 CrossRefPubMedGoogle Scholar
  16. 16.
    Ribeiro GA, Cunha-Junior EF, Pinheiro RO, da-Silva SA, Canto-Cavalheiro MM, da Silva AJ, Costa PR, Netto CD, Melo RC, Almeida-Amaral EE, Torres-Santos EC (2013) LQB-118, an orally active pterocarpanquinone, induces selective oxidative stress and apoptosis in Leishmania amazonensis. J Antimicrob Chemother 68:789–799. doi: 10.1093/jac/dks498 CrossRefPubMedGoogle Scholar
  17. 17.
    Nestal de Moraes G, Castro CP, Salustiano EJ, Dumas ML, Costas F, Lam EW, Costa PR, Maia RC (2014) The pterocarpanquinone LQB-118 induces apoptosis in acute myeloid leukemia cells of distinct molecular subtypes and targets FoxO3a and FoxM1 transcription factors. Int J Oncol 45:1949–1958. doi: 10.3892/ijo.2014.2615 PubMedGoogle Scholar
  18. 18.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  19. 19.
    Palacios R (1982) Concanavalin a triggers T lymphocytes by directly interacting with their receptors for activation. J Immunol 128:337–342PubMedGoogle Scholar
  20. 20.
    Maia RC, Vasconcelos FC, de Sa BT, Salustiano EJ, da Silva LF, Pereira DL, Moellman-Coelho A, Netto CD, da Silva AJ, Rumjanek VM, Costa PR (2011) LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: a novel class of agent with high apoptotic effect in chronic myeloid leukemia cells. Investig New Drugs 29:1143–1155. doi: 10.1007/s10637-010-9453-z CrossRefGoogle Scholar
  21. 21.
    Buarque CD, Militao GC, Lima DJ, Costa-Lotufo LV, Pessoa C, de Moraes MO, Cunha-Junior EF, Torres-Santos EC, Netto CD, Costa PR (2011) Pterocarpanquinones, aza-pterocarpanquinone and derivatives: synthesis, antineoplasic activity on human malignant cell lines and antileishmanial activity on Leishmania amazonensis. Bioorg Med Chem 19:6885–6891. doi: 10.1016/j.bmc.2011.09.025 CrossRefPubMedGoogle Scholar
  22. 22.
    de Souza Reis FR, de Faria FC, Castro CP, de Souza PS, da Cunha VF, Bello RD, da Silva AJ, Costa PR, Maia RC (2013) The therapeutical potential of a novel pterocarpanquinone LQB-118 to target inhibitor of apoptosis proteins in acute myeloid leukemia cells. Anti Cancer Agents Med Chem 13:341–351. doi: 10.2174/1871520611313020019 CrossRefGoogle Scholar
  23. 23.
    de Faria FC, Leal ME, Bernardo PS, Costa PR, Maia RC (2015) NFkappaB pathway and microRNA-9 and −21 are involved in sensitivity to the pterocarpanquinone LQB-118 in different CML cell lines. Anti Cancer Agents Med Chem 15:345–352. doi: 10.2174/18715206113139990108 CrossRefGoogle Scholar
  24. 24.
    Oh ET, Park HJ (2015) Implications of NQO1 in cancer therapy. BMB Rep 48:609–617CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cheng SM, Chang YC, Liu CY, Lee JY, Chan HH, Kuo CW, Lin KY, Tsai SL, Chen SH, Li CF, Leung E, Kanwar JR, Huang CC, Chang JY, Cheung CH (2015) YM155 down-regulates survivin and XIAP, modulates autophagy and induces autophagy-dependent DNA damage in breast cancer cells. Br J Pharmacol 172:214–234. doi: 10.1111/bph.12935 CrossRefPubMedGoogle Scholar
  26. 26.
    Ma Q, Chang Z, Wang W, Wang B (2015) Rapamycin-mediated mTOR inhibition reverses drug resistance to Adriamycin in Colon cancer cells. Hepato-Gastroenterology 62:880–886PubMedGoogle Scholar
  27. 27.
    Chagin AS (2016) Effectors of mTOR-autophagy pathway: targeting cancer, affecting the skeleton. Curr Opin Pharmacol 28:1–7. doi: 10.1016/j.coph.2016.02.004 CrossRefPubMedGoogle Scholar
  28. 28.
    Buckner JC, Forouzesh B, Erlichman C, Hidalgo M, Boni JP, Dukart G, Berkenblit A, Rowinsky EK (2010) Phase I, pharmacokinetic study of temsirolimus administered orally to patients with advanced cancer. Investig New Drugs 28:334–342. doi: 10.1007/s10637-009-9257-1 CrossRefGoogle Scholar
  29. 29.
    Mita MM, Mita A, Rowinsky EK (2003) The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther 2:S169–S177CrossRefPubMedGoogle Scholar
  30. 30.
    Capone F, Guerriero E, Sorice A, Colonna G, Storti G, Pagliuca J, Castello G, Costantini S (2014) Synergistic antitumor effect of doxorubicin and tacrolimus (FK506) on hepatocellular carcinoma cell lines. ScientificWorldJournal 2014:450390. doi: 10.1155/2014/450390 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mazur B, Szczepanski T, Karpe J, Sonta-Jakimczyk D, Bubala H, Torbus M (2006) Decreased numbers of CD4+ T lymphocytes in peripheral blood after treatment of childhood acute lymphoblastic leukemia. Leuk Res 30:33–36. doi: 10.1016/j.leukres.2005.05.024 CrossRefPubMedGoogle Scholar
  32. 32.
    Germain RN (2002) T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2:309–322. doi: 10.1038/nri798 CrossRefPubMedGoogle Scholar
  33. 33.
    Allodji RS, Schwartz B, Veres C, Haddy N, Rubino C, Le Deley MC, Labbe M, Diop F, Jackson A, Dayet F, Benabdennebi A, Llanas D, Vu Bezin J, Chavaudra J, Lefkopoulos D, Deutsch E, Oberlin O, de Vathaire F, Diallo I (2015) Risk of subsequent leukemia after a solid tumor in childhood: impact of bone marrow radiation therapy and chemotherapy. Int J Radiat Oncol Biol Phys 93:658–667. doi: 10.1016/j.ijrobp.2015.07.2270 CrossRefPubMedGoogle Scholar
  34. 34.
    Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822:2–8. doi: 10.1016/j.bbadis.2010.11.010 CrossRefPubMedGoogle Scholar
  35. 35.
    Aoyagi T, Terracina KP, Raza A, Matsubara H, Takabe K (2015) Cancer cachexia, mechanism and treatment. World J Gastrointest Oncol 7:17–29. doi: 10.4251/wjgo.v7.i4.17 PubMedPubMedCentralGoogle Scholar
  36. 36.
    Argiles JM, Busquets S, Lopez-Soriano FJ (2011) Anti-inflammatory therapies in cancer cachexia. Eur J Pharmacol 668(Suppl 1):S81–S86. doi: 10.1016/j.ejphar.2011.07.007 CrossRefPubMedGoogle Scholar
  37. 37.
    Camargo CA, Gomes-Marcondes MC, Wutzki NC, Aoyama H (2012) Naringin inhibits tumor growth and reduces interleukin-6 and tumor necrosis factor alpha levels in rats with Walker 256 carcinosarcoma. Anticancer Res 32:129–133PubMedGoogle Scholar
  38. 38.
    Li B, Wan L, Li Y, Yu Q, Chen P, Gan R, Yang Q, Han Y, Guo C (2014) Baicalin, a component of Scutellaria Baicalensis, alleviates anorexia and inhibits skeletal muscle atrophy in experimental cancer cachexia. Tumour Biol 35:12415–12425. doi: 10.1007/s13277-014-2558-9 CrossRefPubMedGoogle Scholar
  39. 39.
    de Oliveira SI, Andrade LN, Onuchic AC, Nonogaki S, Fernandes PD, Pinheiro MC, Rohde CB, Chammas R, Jancar S (2010) Platelet-activating factor receptor (PAF-R)-dependent pathways control tumour growth and tumour response to chemotherapy. BMC Cancer 10:200. doi: 10.1186/1471-2407-10-200 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Eduardo J. Salustiano
    • 1
    • 2
  • Matheus L. Dumas
    • 1
  • Gabriel G. Silva-Santos
    • 1
  • Chaquip D. Netto
    • 2
    • 3
  • Paulo R. R. Costa
    • 2
  • Vivian M. Rumjanek
    • 1
  1. 1.Laboratory of Tumor Immunology, Leopoldo de Meis Institute of Medical Biochemistry (IBqM)Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Laboratory of Bioorganic Chemistry, Institute for Natural Products ResearchFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Laboratory of Chemistry, Macaé Institute of Metrology and TechnologyFederal University of Rio de Janeiro, Professor Aloísio Teixeira Macaé CampusMacaéBrazil

Personalised recommendations