Advertisement

Investigational New Drugs

, Volume 34, Issue 2, pp 159–167 | Cite as

The novel pyrrolo-1,5-benzoxazepine, PBOX-15, synergistically enhances the apoptotic efficacy of imatinib in gastrointestinal stromal tumours; suggested mechanism of action of PBOX-15

  • Paula Kinsella
  • Lisa M. Greene
  • Sandra A. Bright
  • Jade K. Pollock
  • Stefania Butini
  • Giuseppe Campiani
  • Sebastian Bauer
  • D. Clive Williams
  • Daniela M. Zisterer
PRECLINICAL STUDIES
  • 256 Downloads

Summary

The C-KIT receptor tyrosine kinase is constitutively activated in the majority of gastrointestinal stromal tumours (GIST). Imatinib (IM) a selective inhibitor of C-KIT, is indicated for the treatment of KIT-positive unresectable and/or metastatic GIST, and has tripled the survival time of patients with metastatic GIST. However, the majority of patients develop IM-resistance and progress. Although IM elicits strong antiproliferative effects, it fails to induce sufficient levels of apoptosis; acquired IM-resistance and disease recurrence remain an issue, a more effective drug treatment is greatly needed. We examined the effect of a novel microtubule-targeting agent (MTA), pyrrolo-1,5-benzoxazepine (PBOX)-15 in combination with IM on GIST cells. PBOX-15 decreased viability and in combination with IM synergistically enhanced apoptosis in both IM-sensitive and IM-resistant GIST cells, decreased the anti-apoptotic protein Mcl-1, and enhanced activation of pro-caspase-3 and PARP cleavage. The combination treatment also led to an enhanced inhibition of C-KIT-phosphorylation and inactivation of C-KIT-dependent signalling in comparison to either drug alone; CDC37, a key regulator of C-KIT in GIST was also dramatically decreased. Furthermore, PBOX-15 reduced CKII expression, an enzyme which regulates the expression of CDC37. In conclusion, our findings indicate the potential of PBOX-15 to improve the apoptotic response of IM in GIST cells and provide a more effective treatment option for GIST patients.

Keywords

Gastrointestinal Imatinib Microtubules CKIT CDC37 CKII 

Notes

Acknowledgments

We would like to thank Novartis Pharma AG, Basel, Switzerland for their kind donation of imatinib. We would also like to thank Dr. Jonathan Fletcher for his initial advice with this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10637_2016_331_MOESM1_ESM.pptx (127 kb)
Supp Fig.1 Imatinib/PBOX-15 gives a small amount of PARP cleavage in GIST-T1. Cells were treated with vehicle (Veh), imatinib (0.16 μM), PBOX-15 (0.6 μM) or combination for 24 h in GIST-T1 cells, cell lysates were prepared for western blot analysis. β-actin expression was measured as a loading control. Results are representative of three separate experiments. (PPTX 126 kb)

References

  1. 1.
    Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, McGreevey LS, Chen CJ, Van den Abbeele AD, Druker BJ, Kiese B, Eisenberg B, Roberts PJ, Singer S, Fletcher CD, Silberman S, Dimitrijevic S, Fletcher JA (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349CrossRefPubMedGoogle Scholar
  2. 2.
    Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580CrossRefPubMedGoogle Scholar
  3. 3.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the abl tyrosine kinase on the growth of bcr-abl positive cells. Nat Med 2:561–566CrossRefPubMedGoogle Scholar
  4. 4.
    Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932PubMedGoogle Scholar
  5. 5.
    Lennon JC, Bright SA, Carroll E, Butini S, Campiani G, O'Meara A, Williams DC, Zisterer DM (2014) The novel pyrrolo-1,5-benzoxazepine, PBOX-6, synergistically enhances the apoptotic effects of carboplatin in drug sensitive and multidrug resistant neuroblastoma cells. Biochem Pharmacol 87:611–624CrossRefPubMedGoogle Scholar
  6. 6.
    Mulligan JM, Greene LM, Cloonan S, Mc Gee MM, Onnis V, Campiani G, Fattorusso C, Lawler M, Williams DC, Zisterer DM (2006) Identification of tubulin as the molecular target of proapoptotic pyrrolo-1,5-benzoxazepines. Mol Pharmacol 70:60–70PubMedGoogle Scholar
  7. 7.
    Nathwani SM, Butler S, Fayne D, McGovern NN, Sarkadi B, Meegan MJ, Lloyd DG, Campiani G, Lawler M, Williams DC, Zisterer DM (2010) Novel microtubule-targeting agents, pyrrolo-1,5-benzoxazepines, induce apoptosis in multi-drug-resistant cancer cells. Cancer Chemother Pharmacol 66:585–596CrossRefPubMedGoogle Scholar
  8. 8.
    McElligott AM, Maginn EN, Greene LM, McGuckin S, Hayat A, Browne PV, Butini S, Campiani G, Catherwood MA, Vandenberghe E, Williams DC, Zisterer DM, Lawler M (2009) The novel tubulin-targeting agent pyrrolo-1,5-benzoxazepine-15 induces apoptosis in poor prognostic subgroups of chronic lymphocytic leukemia. Cancer Res 69:8366–8375CrossRefPubMedGoogle Scholar
  9. 9.
    Bright SA, McElligott AM, O'Connell JW, O'Connor L, Carroll P, Campiani G, Deininger MW, Conneally E, Lawler M, Williams DC, Zisterer DM (2010) Novel pyrrolo-1,5-benzoxazepine compounds display significant activity against resistant chronic myeloid leukaemia cells in vitro, in ex vivo patient samples and in vivo. Br J Cancer 102:1474–1482CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Garner AP, Gozgit JM, Anjum R, Vodala S, Schrock A, Zhou T, Serrano C, Eilers G, Zhu M, Ketzer J, Wardwell S, Ning Y, Song Y, Kohlmann A, Wang F, Clackson T, Heinrich MC, Fletcher JA, Bauer S, Rivera VM (2014) Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin Cancer Res 20:5745–5755CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Campiani G, Nacci V, Fiorini I, De Filippis MP, Garofalo A, Ciani SM, Greco G, Novellino E, Williams DC, Zisterer DM, Woods MJ, Mihai C, Manzoni C, Mennini T (1996) Synthesis, biological activity, and SARs of pyrrolobenzoxazepine derivatives, a new class of specific "peripheral-type" benzodiazepine receptor ligands. J Med Chem 39:3435–3450CrossRefPubMedGoogle Scholar
  12. 12.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzym Regul 22:27–55CrossRefGoogle Scholar
  13. 13.
    Bauer S, Yu LK, Demetri GD, Fletcher JA (2006) Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res 66:9153–9161CrossRefPubMedGoogle Scholar
  14. 14.
    Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D, McMahon J, Taguchi T, Floris G, Debiec-Rychter M, Schoffski P, Trent JA, Debnath J, Rubin BP (2010) Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci U S A 107:14333–14338CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nagata K, Kawakami T, Kurata Y, Kimura Y, Suzuki Y, Nagata T, Sakuma Y, Miyagi Y, Hirano H (2015) Augmentation of multiple protein kinase activities associated with secondary imatinib resistance in gastrointestinal stromal tumors as revealed by quantitative phosphoproteome analysis. J Proteome 115:132–142CrossRefGoogle Scholar
  16. 16.
    Greene LM, Kelly L, Onnis V, Campiani G, Lawler M, Williams DC, Zisterer DM (2007) STI-571 (imatinib mesylate) enhances the apoptotic efficacy of pyrrolo-1,5-benzoxazepine-6, a novel microtubule-targeting agent, in both STI-571-sensitive and -resistant bcr-abl-positive human chronic myeloid leukemia cells. J Pharmacol Exp Ther 321:288–297CrossRefPubMedGoogle Scholar
  17. 17.
    Marino-Enriquez A, Ou WB, Cowley G, Luo B, Jonker AH, Mayeda M, Okamoto M, Eilers G, Czaplinski JT, Sicinska E, Wang Y, Taguchi T, Demetri GD, Root DE, Fletcher JA (2014) Genome-wide functional screening identifies CDC37 as a crucial HSP90-cofactor for KIT oncogenic expression in gastrointestinal stromal tumors. Oncogene 33:1872–1876CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim SJ, Uehara H, Yazici S, Langley RR, He J, Tsan R, Fan D, Killion JJ, Fidler IJ (2004) Simultaneous blockade of platelet-derived growth factor-receptor and epidermal growth factor-receptor signaling and systemic administration of paclitaxel as therapy for human prostate cancer metastasis in bone of nude mice. Cancer Res 64:4201–4208CrossRefPubMedGoogle Scholar
  19. 19.
    Kinsella P, Clynes M, Amberger-Murphy V (2011) Imatinib and docetaxel in combination can effectively inhibit glioma invasion in an in vitro 3D invasion assay. J Neuro-Oncol 101:189–198CrossRefGoogle Scholar
  20. 20.
    Xiao H, Zheng HX, Wu LN, Liang G, Zhao YZ, Liang JF (2012) Therapeutic effect of in vitro 5-aza-2'-deoxycytidine combined with imatinib on gastrointestinal stromal tumor. Zhonghua Wei Chang Wai Ke Za Zhi 15:266–270PubMedGoogle Scholar
  21. 21.
    Yan J, Zhong N, Liu G, Chen K, Liu X, Su L, Singhal S (2014) Usp9x- and noxa-mediated mcl-1 downregulation contributes to pemetrexed-induced apoptosis in human non-small-cell lung cancer cells. Cell Death Dis 5:e1316CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Quattrone, A., A. Wozniak, B. Dewaele, G. Floris, V. Vanspauwen, T. Van Looy, P. Schoffski, P. Rutkowski, R. Sciot, and M. Debiec-Rychter (2014) Frequent mono-allelic loss associated with deficient PTEN expression in imatinib-resistant gastrointestinal stromal tumors. Mod PatholGoogle Scholar
  23. 23.
    Fumo G, Akin C, Metcalfe DD, Neckers L (2004) 17-allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood 103:1078–1084CrossRefPubMedGoogle Scholar
  24. 24.
    Smith JR, Clarke PA, de Billy E, Workman P (2009) Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 28:157–169CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bandhakavi S, McCann RO, Hanna DE, Glover CV (2003) A positive feedback loop between protein kinase CKII and Cdc37 promotes the activity of multiple protein kinases. J Biol Chem 278:2829–2836CrossRefPubMedGoogle Scholar
  26. 26.
    Sarno S, Ghisellini P, Pinna LA (2002) Unique activation mechanism of protein kinase CK2. The N-Terminal Segment Is Essential for Constitutive Activity of the Catalytic Subunit but not of the Holoenzyme J Biol Chem 277:22509–22514Google Scholar
  27. 27.
    Stepanova L, Leng X, Parker SB, Harper JW (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10:1491–1502CrossRefPubMedGoogle Scholar
  28. 28.
    Stepanova L, Yang G, DeMayo F, Wheeler TM, Finegold M, Thompson TC, Harper JW (2000) Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia. Oncogene 19:2186–2193CrossRefPubMedGoogle Scholar
  29. 29.
    Lim AC, Tiu SY, Li Q, Qi RZ (2004) Direct regulation of microtubule dynamics by protein kinase CK2. J Biol Chem 279:4433–4439CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Paula Kinsella
    • 1
  • Lisa M. Greene
    • 1
  • Sandra A. Bright
    • 1
  • Jade K. Pollock
    • 1
  • Stefania Butini
    • 2
  • Giuseppe Campiani
    • 2
  • Sebastian Bauer
    • 3
  • D. Clive Williams
    • 1
  • Daniela M. Zisterer
    • 1
  1. 1.School of Biochemistry and Immunology, Trinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
  2. 2.European Research Centre for Drug Discovery & Development, DBCFUniversity of SienaSienaItaly
  3. 3.West German Cancer Center, Medical OncologyEssenGermany

Personalised recommendations