Investigational New Drugs

, Volume 32, Issue 6, pp 1167–1180 | Cite as

Targeting polo-like kinase 1 by NMS-P937 in osteosarcoma cell lines inhibits tumor cell growth and partially overcomes drug resistance

  • Valeria Sero
  • Elisa Tavanti
  • Serena Vella
  • Claudia Maria Hattinger
  • Marilù Fanelli
  • Francesca Michelacci
  • Rogier Versteeg
  • Barbara Valsasina
  • Beth Gudeman
  • Piero Picci
  • Massimo Serra


Background Polo-like kinase 1 (PLK1) has emerged as a prognostic factor in various neoplasms, but only scarce data have been reported for high-grade osteosarcoma (OS). In this study, we assessed PLK1 expression and the efficacy of PLK1 inhibitor NMS-P937 in OS. Methods PLK1 expression was assessed on 21 OS clinical samples and on a panel of human OS cell lines. In vitro efficacy of NMS-P937 was evaluated on nine drug-sensitive and six drug-resistant human OS cell lines, either as single agent or in combination with the drugs used in chemotherapy for OS. Results PLK1 expression was higher in OS clinical samples and cell lines compared to normal human tissue. A higher PLK1 expression at diagnosis appeared to be associated with an unfavourable clinical outcome. PLK1 silencing produced growth inhibition, cell cycle retardation and apoptosis induction in human OS cell lines. NMS-P937 proved to be highly active in both drug-sensitive and drug-resistant cell lines, with the only exception of ABCB1-overexpressing, Doxorubicin (DX)-resistant variants. However, in these cells, the association of NMS-P937 with DX was able to revert DX-resistance by negatively interfering with ABCB1 transport activity. NMS-P937 was also able to decrease clonogenic and migration ability of human OS cell lines. Conclusion PLK1 can be proposed as a new candidate target for OS. Targeting PLK1 in OS with NMS-P937 in association with conventional chemotherapeutic drugs may be a new interesting therapeutic option, since this approach has proved to be active against drug resistant cells.


Polo-like kinase 1 Osteosarcoma Drug resistance NMS-P937 ABCB1 Novel therapeutic strategies 



This study was supported by grants from: Associazione Italiana per la Ricerca sul Cancro (A.I.R.C., grant to Massimo Serra); Istituto Ortopedico Rizzoli (5‰ contributions to Rizzoli Institute); the European Project “Kids Cancer Kinome” (KCK; grant No.037390; Dr. Elisa Tavanti received a fellowship from the Associazione Italiana per la Ricerca sul Cancro (A.I.R.C.) for the research project “Pre-clinical validation of approaches targeting protein kinases in osteosarcoma”. We would like to thank Nerviano Medical Sciences (Nerviano, Italy) that kindly provided us NMS-P937 and CBA Research Inc. (Lexington, KY) that kindly provided us CBT-1. We also thank Dr. Peter van Sluis and Dr. Jan Koster (Academic Medical Center, University of Amsterdam, The Netherlands) for profiling data handling and assistance with R2 software. We would like to thank Dr. Alba Balladelli for editing the manuscript.

Ethical standards

The Authors declare that all experiments were performed in compliance with Italian laws.

Conflict of interest

The Authors declare no conflict of interest. Nerviano Medical Sciences and CBA Research Inc. nor their affiliates provided any funding for this research.

Supplementary material

10637_2014_158_MOESM1_ESM.pdf (5 mb)
ESM 1 (PDF 5154 kb)


  1. 1.
    Strebhardt K (2010) Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 9(8):643–660. doi: 10.1038/nrd3184 CrossRefPubMedGoogle Scholar
  2. 2.
    de Carcer G, Manning G, Malumbres M (2011) From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 10(14):2255–2262PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Weiss L, Efferth T (2012) Polo-like kinase 1 as target for cancer therapy. Exp Hematol Oncol 1(1):38. doi: 10.1186/2162-3619-1-38 PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Gray PJ Jr, Bearss DJ, Han H, Nagle R, Tsao MS, Dean N, Von Hoff DD (2004) Identification of human polo-like kinase 1 as a potential therapeutic target in pancreatic cancer. Mol Cancer Ther 3(5):641–646PubMedGoogle Scholar
  5. 5.
    Guan R, Tapang P, Leverson JD, Albert D, Giranda VL, Luo Y (2005) Small interfering RNA-mediated Polo-like kinase 1 depletion preferentially reduces the survival of p53-defective, oncogenic transformed cells and inhibits tumor growth in animals. Cancer Res 65(7):2698–2704. doi: 10.1158/0008-5472.CAN-04-2131 CrossRefPubMedGoogle Scholar
  6. 6.
    Spankuch B, Matthess Y, Knecht R, Zimmer B, Kaufmann M, Strebhardt K (2004) Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst 96(11):862–872CrossRefPubMedGoogle Scholar
  7. 7.
    Liu X, Lei M, Erikson RL (2006) Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol 26(6):2093–2108. doi: 10.1128/MCB.26.6.2093-2108.2006 PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Yamaguchi U, Honda K, Satow R, Kobayashi E, Nakayama R, Ichikawa H, Shoji A, Shitashige M, Masuda M, Kawai A, Chuman H, Iwamoto Y, Hirohashi S, Yamada T (2009) Functional genome screen for therapeutic targets of osteosarcoma. Cancer Sci 100(12):2268–2274. doi: 10.1111/j.1349-7006.2009.01310.x CrossRefPubMedGoogle Scholar
  9. 9.
    Liu X, Choy E, Harmon D, Yang S, Yang C, Mankin H, Hornicek FJ, Duan Z (2011) Inhibition of polo-like kinase 1 leads to the suppression of osteosarcoma cell growth in vitro and in vivo. Anticancer Drugs 22(5):444–453. doi: 10.1097/CAD.0b013e32834513f4 CrossRefPubMedGoogle Scholar
  10. 10.
    Morales AG, Brassesco MS, Pezuk JA, Oliveira JC, Montaldi AP, Sakamoto-Hojo ET, Scrideli CA, Tone LG (2011) BI 2536-mediated PLK1 inhibition suppresses HOS and MG-63 osteosarcoma cell line growth and clonogenicity. Anticancer Drugs 22(10):995–1001. doi: 10.1097/CAD.0b013e32834a16d4 PubMedGoogle Scholar
  11. 11.
    Spaniol K, Boos J, Lanvers-Kaminsky C (2011) An in-vitro evaluation of the polo-like kinase inhibitor GW843682X against paediatric malignancies. Anticancer Drugs 22(6):531–542. doi: 10.1097/CAD.0b013e3283454526 CrossRefPubMedGoogle Scholar
  12. 12.
    Benini S, Baldini N, Manara MC, Chano T, Serra M, Rizzi S, Lollini PL, Picci P, Scotlandi K (1999) Redundancy of autocrine loops in human osteosarcoma cells. Int J Cancer 80(4):581–588. doi: 10.1002/(SICI)1097-0215(19990209)80:4<581::AID-IJC16>3.0.CO;2-O CrossRefPubMedGoogle Scholar
  13. 13.
    Ottaviano L, Schaefer KL, Gajewski M, Huckenbeck W, Baldus S, Rogel U, Mackintosh C, de Alava E, Myklebost O, Kresse SH, Meza-Zepeda LA, Serra M, Cleton-Jansen AM, Hogendoorn PC, Buerger H, Aigner T, Gabbert HE, Poremba C (2010) Molecular characterization of commonly used cell lines for bone tumor research: a trans-European EuroBoNet effort. Genes Chromosomes Cancer 49(1):40–51. doi: 10.1002/gcc.20717 CrossRefPubMedGoogle Scholar
  14. 14.
    Pasello M, Michelacci F, Scionti I, Hattinger CM, Zuntini M, Caccuri AM, Scotlandi K, Picci P, Serra M (2008) Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res 68(16):6661–6668. doi: 10.1158/0008-5472.CAN-07-5840 CrossRefPubMedGoogle Scholar
  15. 15.
    Serra M, Reverter-Branchat G, Maurici D, Benini S, Shen JN, Chano T, Hattinger CM, Manara MC, Pasello M, Scotlandi K, Picci P (2004) Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol 15(1):151–160CrossRefPubMedGoogle Scholar
  16. 16.
    Serra M, Scotlandi K, Manara MC, Maurici D, Lollini PL, De Giovanni C, Toffoli G, Baldini N (1993) Establishment and characterization of multidrug-resistant human osteosarcoma cell lines. Anticancer Res 13(2):323–329PubMedGoogle Scholar
  17. 17.
    Molenaar JJ, Koster J, Ebus ME, van Sluis P, Westerhout EM, de Preter K, Gisselsson D, Ora I, Speleman F, Caron HN, Versteeg R (2012) Copy number defects of G1-cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis. Genes Chromosomes Cancer 51(1):10–19. doi: 10.1002/gcc.20926 CrossRefPubMedGoogle Scholar
  18. 18.
    Tavanti E, Sero V, Vella S, Fanelli M, Michelacci F, Landuzzi L, Magagnoli G, Versteeg R, Picci P, Hattinger CM, Serra M (2013) Preclinical validation of Aurora kinases-targeting drugs in osteosarcoma. Br J Cancer 109(10):2607–2618. doi: 10.1038/bjc.2013.643 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hattinger CM, Stoico G, Michelacci F, Pasello M, Scionti I, Remondini D, Castellani GC, Fanelli M, Scotlandi K, Picci P, Serra M (2009) Mechanisms of gene amplification and evidence of coamplification in drug-resistant human osteosarcoma cell lines. Genes Chromosomes Cancer 48(4):289–309. doi: 10.1002/gcc.20640 CrossRefPubMedGoogle Scholar
  20. 20.
    Kelly RJ, Robey RW, Chen CC, Draper D, Luchenko V, Barnett D, Oldham RK, Caluag Z, Frye AR, Steinberg SM, Fojo T, Bates SE (2012) A pharmacodynamic study of the P-glycoprotein antagonist CBT-1(R) in combination with paclitaxel in solid tumors. Oncologist 17(4):512. doi: 10.1634/theoncologist.2012-0080 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T, Bates SE (2008) Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol 75(6):1302–1312. doi: 10.1016/j.bcp.2007.12.001 PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Chou AJ, Gorlick R (2006) Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther 6(7):1075–1085. doi: 10.1586/14737140.6.7.1075 CrossRefPubMedGoogle Scholar
  23. 23.
    Dai X, Ma W, He X, Jha RK (2011) Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing’s sarcoma. Med Sci Monit 17(8):RA177–190PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Hattinger CM, Pasello M, Ferrari S, Picci P, Serra M (2010) Emerging drugs for high-grade osteosarcoma. Expert Opin Emerg Drugs 15(4):615–634. doi: 10.1517/14728214.2010.505603 CrossRefPubMedGoogle Scholar
  25. 25.
    Duan Z, Ji D, Weinstein EJ, Liu X, Susa M, Choy E, Yang C, Mankin H, Hornicek FJ (2010) Lentiviral shRNA screen of human kinases identifies PLK1 as a potential therapeutic target for osteosarcoma. Cancer Lett 293(2):220–229. doi: 10.1016/j.canlet.2010.01.014 CrossRefPubMedGoogle Scholar
  26. 26.
    Hu K, Lee C, Qiu D, Fotovati A, Davies A, Abu-Ali S, Wai D, Lawlor ER, Triche TJ, Pallen CJ, Dunn SE (2009) Small interfering RNA library screen of human kinases and phosphatases identifies polo-like kinase 1 as a promising new target for the treatment of pediatric rhabdomyosarcomas. Mol Cancer Ther 8(11):3024–3035. doi: 10.1158/1535-7163.MCT-09-0365 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Beria I, Bossi RT, Brasca MG, Caruso M, Ceccarelli W, Fachin G, Fasolini M, Forte B, Fiorentini F, Pesenti E, Pezzetta D, Posteri H, Scolaro A, Re Depaolini S, Valsasina B (2011) NMS-P937, a 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor. Bioorg Med Chem Lett 21(10):2969–2974. doi: 10.1016/j.bmcl.2011.03.054 CrossRefPubMedGoogle Scholar
  28. 28.
    Valsasina B, Beria I, Alli C, Alzani R, Avanzi N, Ballinari D, Cappella P, Caruso M, Casolaro A, Ciavolella A, Cucchi U, De Ponti A, Felder E, Fiorentini F, Galvani A, Gianellini LM, Giorgini ML, Isacchi A, Lansen J, Pesenti E, Rizzi S, Rocchetti M, Sola F, Moll J (2012) NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies. Mol Cancer Ther 11(4):1006–1016. doi: 10.1158/1535-7163.MCT-11-0765 CrossRefPubMedGoogle Scholar
  29. 29.
    Casolaro A, Golay J, Albanese C, Ceruti R, Patton V, Cribioli S, Pezzoni A, Losa M, Texido G, Giussani U, Marchesi F, Amboldi N, Valsasina B, Bungaro S, Cazzaniga G, Rambaldi A, Introna M, Pesenti E, Alzani R (2013) The Polo-Like Kinase 1 (PLK1) inhibitor NMS-P937 is effective in a new model of disseminated primary CD56+ acute monoblastic leukaemia. PLoS One 8(3):e58424. doi: 10.1371/journal.pone.0058424 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Fink J, Sanders K, Rippl A, Finkernagel S, Beckers TL, Schmidt M (2007) Cell type-- dependent effects of Polo-like kinase 1 inhibition compared with targeted polo box interference in cancer cell lines. Mol Cancer Ther 6(12 Pt 1):3189–3197. doi: 10.1158/1535-7163.MCT-07-0048 CrossRefPubMedGoogle Scholar
  31. 31.
    Louwen F, Yuan J (2013) Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 4(7):958–971PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Sur S, Pagliarini R, Bunz F, Rago C, Diaz LA Jr, Kinzler KW, Vogelstein B, Papadopoulos N (2009) A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc Natl Acad Sci U S A 106(10):3964–3969. doi: 10.1073/pnas.0813333106 PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Tang N, Song WX, Luo J, Haydon RC, He TC (2008) Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res 466(9):2114–2130. doi: 10.1007/s11999-008-0335-z PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Han DP, Zhu QL, Cui JT, Wang PX, Qu S, Cao QF, Zong YP, Feng B, Zheng MH, Lu AG (2012) Polo-like kinase 1 is overexpressed in colorectal cancer and participates in the migration and invasion of colorectal cancer cells. Med Sci Monit 18(6):BR237–246PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Zhang G, Zhang Z, Liu Z (2013) Polo-like kinase 1 is overexpressed in renal cancer and participates in the proliferation and invasion of renal cancer cells. Tumour Biol 34(3):1887–1894. doi: 10.1007/s13277-013-0732-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang Z, Zhang G, Kong C (2013) High expression of polo-like kinase 1 is associated with the metastasis and recurrence in urothelial carcinoma of bladder. Urol Oncol 31(7):1222–1230. doi: 10.1016/j.urolonc.2011.11.028 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Valeria Sero
    • 1
  • Elisa Tavanti
    • 1
  • Serena Vella
    • 1
  • Claudia Maria Hattinger
    • 1
  • Marilù Fanelli
    • 1
  • Francesca Michelacci
    • 1
  • Rogier Versteeg
    • 2
  • Barbara Valsasina
    • 3
  • Beth Gudeman
    • 4
  • Piero Picci
    • 1
  • Massimo Serra
    • 1
  1. 1.Laboratory of Experimental Oncology, Rizzoli Orthopaedic InstituteBolognaItaly
  2. 2.Department of Human Genetics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Nerviano Medical SciencesNervianoItaly
  4. 4.CBA Research IncLexingtonUSA

Personalised recommendations