Skip to main content
Log in

Ellipticine derivative induces potent cytostatic effect in acute myeloid leukaemia cells

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

A panel of novel ellipticine isomers were designed and synthesised with the aim of evaluating their anti-cancer effects on selected leukaemia cell lines. A preliminary NCI 60-cell screen demonstrated that these compounds display promising anti-tumour activity across a number of different cell types. We have consequently examined the effect of these derivatives in detail on the Acute Myeloid Leukaemia (AML) cell line, MV4-11. Cell cycle analyses revealed that the compounds had a range of distinctive cell cycle effects. 7-Hydroxyisoellipticine showed the most promise with respect to cytostatic activity. We demonstrated that this compound inhibited proliferation of leukaemia cells by preventing cells from progressing from G2 phase into mitosis over a period of 24 h at a concentration of 5 μM. Our research suggests that this is mediated by an induction of reactive oxygen species (ROS), which in turn activates the DNA damage response pathway. As a result of the activation of p53, cyclin B1 is inhibited. The induction of this pathway leads to apoptosis which is seen at 48 h using the same dose of 7-hydroxyisoellipticine. This study provides for the first time detailed cellular information on the potential use of isoellipticines as chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodwin S, Smith AF, Horning EC (1959) Alkaloids of ochrosia elliptica labill. J Am Chem Soc 81:1903–1908

    Article  CAS  Google Scholar 

  2. Dalton LK, Demerac S, Elmes BC, Loder JW, Swan JM, Teitei T (1967) Synthesis of the tumor-inhibitory alkaloids, ellipticine, 9-methoxyellipticine, and related pyrido-[4,3-b]carbazoles. Aust J Chem 20:2715–2727

    Article  CAS  Google Scholar 

  3. Sbai M, Lyazidi SA, Lerner DA, Castillo DB, Martin MA (1996) Stoichiometry and association constants of the inclusion complexes of ellipticine with modified P-cyclodextrin. Analyst 121:1561–1564

    Article  CAS  Google Scholar 

  4. Miller CM, O’Sullivan EC, Devine KJ, McCarthy FO (2012) Synthesis and biological evaluation of novel isoellipticine derivatives and salts. Org Biomol Chem 10(39):7912–7921

    Article  CAS  PubMed  Google Scholar 

  5. Preisler HD, Lyman GH (1977) Am J of Haematol 3(3):209–218

    Article  CAS  Google Scholar 

  6. Handin RI, Lux SE, Stosse TP, Babior BM (2003) Blood: principles and practice of hematology, 2nd edition, Lippincott. Williams and Wilkins, Philidelphia, pp 483–530

    Google Scholar 

  7. Lowenberg B (1996) Treatment of the elderly patient with acute myeloid leukaemia. Baillieres Clin Haematol 9(1):147–159

    Article  CAS  PubMed  Google Scholar 

  8. O’ Sullivan EC, Miller CM, Deane FM, McCarthy FO (2012) Emerging targets in the bioactivity of ellipticines and derivatives. Studies in natural products chemistry, chapter 6. Elsevier Science Publishers, Amsterdam, pp 189–226

    Google Scholar 

  9. Deane FM, O’Sullivan EC, Maguire AR, Gilbert J, Sakoff JA, McCluskey A et al (2013) Synthesis and evaluation of novel ellipticines as potential anti-cancer agents. Org Biomol Chem 11(8):1334–1344

    Article  CAS  PubMed  Google Scholar 

  10. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30

    Article  CAS  PubMed  Google Scholar 

  11. Ross WE, Glaubiger D, Kohn KW (1978) Protein-associated DNA breaks in cells treated with Adriamycin or ellipticine. Biochim Biophys Acta 519(1):23–30

    Article  CAS  PubMed  Google Scholar 

  12. Auclair C, Paoletti C (1981) Bioactivation of the antitumor drugs 9-hydroellipticine and derivatives by a peroxidase-hydrogen peroxide system. J Med Chem 24(3):289–295

    Article  CAS  PubMed  Google Scholar 

  13. Kuo PL, Hsu YL, Kuo YC, Chang CH, Lin CC (2005) The anti-proliferative inhibition of ellipticine in human breast mda-mb-231 cancer cells is through cell cycle arrest and apoptosis induction. Anticancer Drugs 7:789–795

    Article  Google Scholar 

  14. Hagg M, Berndtsson M, Mandic A, Zhou R, Shoshan MC, Linder S (2004) Induction of endoplasmic reticulum stress by ellipticine plant alkaloids. Mol Cancer Ther 3:489–497

    PubMed  Google Scholar 

  15. Jin X, Gossett DR, Wang S, Yang D, Cao Y, Chen J et al (2004) Inhibition of AKT survival pathway by a small molecule inhibitor in human endometrial cancer cells. Br J Cancer 91(10):1808–1812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Vendome J, Letard S, Martin F, Svinarchuk F, Dubreuil P, Auclair C et al (2005) Molecular modelling of wild-type and D816V c-kit inhibition based on ATP-competitive binding of ellipticine derivatives to tyrosine kinases. J Med Chem 48:6194–6201

    Article  CAS  PubMed  Google Scholar 

  17. Prudent R, Moucadel V, Nguyen CH, Barette C, Schmidt F, Florent JC, Lafanechere L, Sautel CF, Duchemin-Pelletier E, Spreux E, Filhol O, Reiser JB, Cochet C (2010) Antitumor activity of pyridocarbazole and benzopyridoindole derivatives that inhibit protein kinase CK2. Cancer Res 70(23):9865–9874

    Article  CAS  PubMed  Google Scholar 

  18. Peng Y, Li C, Chen L, Sebti S, Chen J (2003) Rescue of Mutant p53 transcription function by ellipticine. Oncogene 22(29):4478–4487

    Article  CAS  PubMed  Google Scholar 

  19. Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44(8):1529–1535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chung YW, Jeong DW, Won JY, Choi EJ, Choi YH, Kim IJ (2002) H2O2-induced AP-1 activation and its effect on p21WAF1/CIP1-mediated G2/M arrest in a p53-deficient human lung cancer cell. Biochem Biophys Res Commun 293:1248–1253

    Article  CAS  PubMed  Google Scholar 

  21. Kreis NN, Sanhaji M, Rieger MA, Louwen F, Yuan J (2013) p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene. doi:10.1038/onc.2013.518

    PubMed  Google Scholar 

  22. Simbulan-Rosenthal CM, Rosenthal DS, Iyer S, Boulares H, Smulson ME (1999) Involvement of PARP and poly(ADP-ribosyl)ation in the early stages of apoptosis and DNA replication. Mol Cell Biochem 193:137–148

    Article  CAS  PubMed  Google Scholar 

  23. Gribble GW, Saulnier MG, Obaza-Nutaitis JA, Ketcha DM (1992) J Org Chem 57:5891–5899

    Article  CAS  Google Scholar 

  24. Kim JY, Lee SG, Chung JY, Kim YJ, Park JE, Koh H et al (2011) Ellipticine induces apoptosis in human endometrial cancer cells: the potential involvement of reactive oxygen species and mitogen-activated protein kinases. Toxicology 289(2–3):91–102

    Article  CAS  PubMed  Google Scholar 

  25. Owusu-Ansah E, Yavari A, Banerjee U (2008) A protocol for in vivo detection of reactive oxygen species. Protoco Exch. doi:10.1038/nprot.2008.23

    Google Scholar 

  26. Bennett MR (2001) Reactive oxygen species and death: oxidative DNA damage in atherosclerosis. Circ Res 88:648–650

    Article  CAS  PubMed  Google Scholar 

  27. Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18(53):7644–7655

    Article  CAS  PubMed  Google Scholar 

  28. Girardi C, James P, Zanin S, Pinna LA, Ruzzene M (2014) Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions. Biochim Biophys Acta 1843(9):1865–1874

    Article  CAS  PubMed  Google Scholar 

  29. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368

    Article  CAS  PubMed  Google Scholar 

  30. Lee SR, Park JH, Park EK, Chung CH, Kang SS, Bang OS (2005) Akt-induced promotion of cell-cycle progression at G2/M phase involves upregulation of NF-Y binding activity in PC12 cells. J Cell Physiol 205(2):270–277

    Article  CAS  PubMed  Google Scholar 

  31. Gutierrez GJ, Tsuji T, Cross JV, Davis RJ, Templeton DJ, Jiang W, Ronai ZA (2010) JNK-mediated phosphorylation of Cdc25C regulates cell cycle entry and G2/M DNA damage checkpoint. J Biol Chem 285:14217–14228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Park EJ, Kiselev E, Conda-Sheridan M, Cushman M, Pezzuto JM (2012) Induction of apoptosis by 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline via modulation of MAPKs (p38 and c-Jun N-terminal kinase) and c-Myc in HL-60 human leukemia cells. J Nat Prod 75(3):378–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Porter AG, Janicke RU (1999) Emerging roles of caspase 3 in apoptosis. Cell Death Differ 6(2):99

    Article  CAS  PubMed  Google Scholar 

  34. Sureau F, Moreau F, Millot JM, Manfait M, Allard B, Aubard J et al (1993) Microspectrofluorometry of the protonation state of ellipticine, an antitumor alkaloid, in single cells. Biophys J 65(5):1767–1774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10(3):175–176

    Article  CAS  PubMed  Google Scholar 

  36. Thorn T, GniadeckiR PAB, Vicanova J, Wulf HC (2001) Differences in activation of G2/M checkpoint in keratinocytes after genotoxic stress induced by hydrogen peroxide and ultraviolet radiation. Free Radic Res 35:405–416

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L et al (2001) Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys 392:311–320

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z, Leonard SS, Huang C, Vallyathan V, Castranova V, Shi X (2003) Role of reactive oxygen species and MAPKs in vanadate-induced G2/M phase arrest. Free Radic Biol Med 34:1333–1342

    Article  CAS  PubMed  Google Scholar 

  39. Bijur GN, Briggs B, Hitchcock CL, Williams MV (1999) Ascorbic acid-dehydroascorbate induces cell cycle arrest at G2/M DNA damage checkpoint during oxidative stress. Environ Mol Mutagen 33:144–152

    Article  CAS  PubMed  Google Scholar 

  40. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair 3:959–967

    Article  CAS  PubMed  Google Scholar 

  41. Fragkos M, Jurvansuu J, Beard P (2009) H2AX is required for cell cycle arrest via the p53/p21 pathway. Mol Cell Biol 29(10):2828–2840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Sugikawa E, Hosoi T, Yazaki N, Gamanuma M, Nakanishi N, Ohashi M (1999) Mutant p53 mediated induction of cell cycle arrest and apoptosis at G1 phase by 9-hydroxyellipticine. Anticancer Res 19(4B):3099–3108

    CAS  PubMed  Google Scholar 

  43. Ohashi M, Sugikawa E, Nakanishi N (1995) Inhibition of p53 protein phosphorylation by 9-hydroxyellipticine: a possible anticancer mechanism. Jpn J Cancer Res 86(9):819–827

    Article  CAS  PubMed  Google Scholar 

  44. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Programme for Research in Third-Level Institutions (PRTLI), the Irish Cancer Society and the Children’s Leukaemia Research Project and the Irish Research Council by means of an IRCSET scholarship award.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Cotter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russell, E.G., O’Sullivan, E.C., Miller, C.M. et al. Ellipticine derivative induces potent cytostatic effect in acute myeloid leukaemia cells. Invest New Drugs 32, 1113–1122 (2014). https://doi.org/10.1007/s10637-014-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0140-3

Keywords

Navigation