Advertisement

Investigational New Drugs

, Volume 32, Issue 5, pp 893–903 | Cite as

Resistance mechanisms of cancer cells to the novel vacuolar H+-ATPase inhibitor archazolid B

  • Rebecca Hamm
  • Yoshikazu Sugimoto
  • Heinrich Steinmetz
  • Thomas Efferth
PRECLINICAL STUDIES

Summary

Resistance of cancer cells towards chemotherapy is the major cause of therapy failure. Hence, the evaluation of cellular defense mechanisms is essential in the establishment of new chemotherapeutics. Archazolid B, a novel vacuolar H+-ATPase inhibitor, displayed cytotoxicity in the low nanomolar range on a panel of different tumor cell lines. First, we investigated tumor-specific cytotoxicity of archazolid B by comparing cancer to non-cancer cells. Breast, liver and colon cancer cells displayed higher drug sensitivity than corresponding non-tumorous cells, whereas leukemia cell lines were as sensitive as peripheral mononuclear blood cells. Investigating classical drug resistance mechanisms, archazolid B was identified as a possible substrate of the ABC transporters ABCB1 (P-glycoprotein) and ABCG2 (BCRP), whereas collateral sensitivity was observed in ABCB5-expressing cells. Our results pointed to a possible binding competition of archazolid B with verapamil on P-glycoprotein. However, archazolid B did not reverse resistance towards doxorubicin indicating that it might be a substrate but not an inhibitor of P-glycoprotein mediated transport. Furthermore, the cytotoxicity of archazolid B was independent of the p53 status of the cell. Mechanisms of aquired resistance were investigated establishing an archazolid B-resistant MCF-7 cell line. Interestingly, drug resistance was not conferred by aberrant expression or DNA mutations of the gene encoding vacuolar H+-ATPase subunit c, the direct target of archazolids. Instead, long-term treatment with archazolid B led to a slight overexpression of ABCB1 and a significant overexpression of the epidermal growth factor receptor and reduced cell growth, all of which can be assumed to contribute to archazolid B resistance.

Keywords

ABC transporters Drug resistance EGFR Myxobacterial compounds p53 

Abbreviations

ABC

ATP-binding cassette

ATP6V0C

(V0 subunit c of V-ATPase)

Ct

Cycle threshold

DMEM

Dulbecco’s Modified Eagle Medium

DMSO

Dimethyl sulfoxide

DPBS

Dulbecco’s phosphate-buffered saline

EGFR

Epidermal growth factor receptor

FBS

Fetal bovine serum

FC

Fold change

MDR

Multidrug resistance

IC50

Half maximal inhibitory concentration

P-gp

P-glycoprotein

P/S

Penicillin/streptomycin

RPMI medium

Roswell Park Memorial Institute medium

SD

Standard deviation

V-ATPase

Vacuolar H+-ATPase

XTT

2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide

Notes

Acknowledgments

We thank Dr. Rolf Müller (Department of Pharmaceutical Biotechnology, Saarland University, Germany) and Dr. Angelika Vollmar (Department of Pharmacy, University of Munich, Germany) for the provision of archazolid B. We also thank Dr. Mechthild Spielmann (Medical Officer, University Hospital, Mainz, Germany) for her support in preparation of blood samples.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S et al (2013) GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide. IARC CancerBase No.11. International Agency for Research on Cancer, LyonGoogle Scholar
  2. 2.
    Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JM, Garcia-Garcia A (2009) V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev 35:707–713CrossRefPubMedGoogle Scholar
  3. 3.
    Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929CrossRefPubMedGoogle Scholar
  4. 4.
    Sasse F, Steinmetz H, Hofle G, Reichenbach H (2003) Archazolids, new cytotoxic macrolactones from Archangium gephyra (Myxobacteria). Production, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 56:520–525CrossRefGoogle Scholar
  5. 5.
    Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H et al (2005) Archazolid and apicularen: novel specific V-ATPase inhibitors. BMC Biochem 6:13PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Bockelmann S, Menche D, Rudolph S, Bender T, Grond S et al (2010) Archazolid A binds to the equatorial region of the c-ring of the vacuolar H+−ATPase. J Biol Chem 285:38304–38314PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    von Schwarzenberg K, Wiedmann RM, Oak P, Schulz S, Zischka H et al (2013) Mode of cell death induction by pharmacological vacuolar H+−ATPase (V-ATPase) inhibition. J Biol Chem 288:1385–1396CrossRefGoogle Scholar
  8. 8.
    Kerbel RS, Kobayashi H, Graham CH (1994) Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes? J Cell Biochem 56:37–47CrossRefPubMedGoogle Scholar
  9. 9.
    Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627CrossRefPubMedGoogle Scholar
  10. 10.
    Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58CrossRefPubMedGoogle Scholar
  11. 11.
    Efferth T (2001) The human ATP-binding cassette transporter genes: from the bench to the bedside. Curr Mol Med 1:45–65CrossRefPubMedGoogle Scholar
  12. 12.
    Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775:237–262PubMedGoogle Scholar
  13. 13.
    Ferry DR, Kerr DJ (1994) Multidrug resistance in cancer. BMJ 308:148–149PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I et al (1999) Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 39:361–398CrossRefPubMedGoogle Scholar
  15. 15.
    Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967CrossRefPubMedGoogle Scholar
  16. 16.
    Ferreira CG, Tolis C, Giaccone G (1999) p53 and chemosensitivity. Ann Oncol 10:1011–1021CrossRefPubMedGoogle Scholar
  17. 17.
    Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J et al (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3:192–222Google Scholar
  18. 18.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773:1263–1284PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kimmig A, Gekeler V, Neumann M, Frese G, Handgretinger R et al (1990) Susceptibility of multidrug-resistant human leukemia cell lines to human interleukin 2-activated killer cells. Cancer Res 50:6793–6799PubMedGoogle Scholar
  20. 20.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95:15665–15670PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Kawanobe T, Kogure S, Nakamura S, Sato M, Katayama K et al (2012) Expression of human ABCB5 confers resistance to taxanes and anthracyclines. Biochem Biophys Res Commun 418:736–741CrossRefPubMedGoogle Scholar
  22. 22.
    Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S et al (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501CrossRefPubMedGoogle Scholar
  23. 23.
    Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S et al (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833PubMedGoogle Scholar
  24. 24.
    Tajima Y, Nakagawa H, Tamura A, Kadioglu O, Satake K, et al (2013) Nitensidine A, a guanidine alkaloid from Pterogyne nitens, is a novel substrate for human ABC transporter ABCB1. PhytomedicineGoogle Scholar
  25. 25.
    Zhao Q, Zeino M, Eichhorn T, Herrmann J, Müller R et al (2013) Molecular docking studies of myxobacterial disorazoles and tubulysins to tubulin. J Biosci Med 3:31–43Google Scholar
  26. 26.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Ferreira RJ, Ferreira MJ, dos Santos DJ (2013) Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein. J Chem Inf Model 53:1747–1760CrossRefPubMedGoogle Scholar
  28. 28.
    Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1981) Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 41:1967–1972PubMedGoogle Scholar
  29. 29.
    Lykkesfeldt AE, Madsen MW, Briand P (1994) Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164,384 and ICI 182,780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res 54:1587–1595PubMedGoogle Scholar
  30. 30.
    Min YS, Yi EH, Lee JK, Choi JW, Sim JH et al (2012) CK20 expression enhances the invasiveness of tamoxifen-resistant MCF-7 cells. Anticancer Res 32:1221–1228PubMedGoogle Scholar
  31. 31.
    Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677CrossRefPubMedGoogle Scholar
  32. 32.
    Fais S, De Milito A, You H, Qin W (2007) Targeting vacuolar H+−ATPases as a new strategy against cancer. Cancer Res 67:10627–10630CrossRefPubMedGoogle Scholar
  33. 33.
    Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases–nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103CrossRefPubMedGoogle Scholar
  34. 34.
    Lu X, Qin W (2012) Vacuolar H(+)-ATPase in cancer cells: structure and function. Atl Genet Cytogenet Oncol Haematol 16:252–259Google Scholar
  35. 35.
    Zhan H, Yokoyama K, Otani H, Tanigaki K, Shirota N et al (2003) Different roles of proteolipids and 70-kDa subunits of V-ATPase in growth and death of cultured human cells. Genes Cells 8:501–513CrossRefPubMedGoogle Scholar
  36. 36.
    Honjo Y, Hrycyna CA, Yan QW, Medina-Perez WY, Robey RW et al (2001) Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 61:6635–6639PubMedGoogle Scholar
  37. 37.
    Higgins CF, Gottesman MM (1992) Is the multidrug transporter a flippase? Trends Biochem Sci 17:18–21CrossRefPubMedGoogle Scholar
  38. 38.
    Sharom FJ (1997) The P-glycoprotein efflux pump: how does it transport drugs? J Membr Biol 160:161–175CrossRefPubMedGoogle Scholar
  39. 39.
    Murakami T, Shibuya I, Ise T, Chen ZS, Akiyama S et al (2001) Elevated expression of vacuolar proton pump genes and cellular PH in cisplatin resistance. Int J Cancer 93:869–874CrossRefPubMedGoogle Scholar
  40. 40.
    Ouar Z, Bens M, Vignes C, Paulais M, Pringel C et al (2003) Inhibitors of vacuolar H+−ATPase impair the preferential accumulation of daunomycin in lysosomes and reverse the resistance to anthracyclines in drug-resistant renal epithelial cells. Biochem J 370:185–193PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Ma L, Center MS (1992) The gene encoding vacuolar H(+)-ATPase subunit C is overexpressed in multidrug-resistant HL60 cells. Biochem Biophys Res Commun 182:675–681CrossRefPubMedGoogle Scholar
  42. 42.
    Soussi T, Beroud C (2001) Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer 1:233–240CrossRefPubMedGoogle Scholar
  43. 43.
    Lin X, Ramamurthi K, Mishima M, Kondo A, Christen RD et al (2001) P53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res 61:1508–1516PubMedGoogle Scholar
  44. 44.
    Yu JL, Coomber BL, Kerbel RS (2002) A paradigm for therapy-induced microenvironmental changes in solid tumors leading to drug resistance. Differentiation 70:599–609CrossRefPubMedGoogle Scholar
  45. 45.
    Kuete V, Tchakam PD, Wiench B, Ngameni B, Wabo HK et al (2013) Cytotoxicity and modes of action of four naturally occuring benzophenones: 2,2′,5,6′-tetrahydroxybenzophenone, guttiferone E, isogarcinol and isoxanthochymol. Phytomedicine 20:528–536CrossRefPubMedGoogle Scholar
  46. 46.
    Wiedmann RM, von Schwarzenberg K, Palamidessi A, Schreiner L, Kubisch R et al (2012) The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1. Cancer Res 72:5976–5987CrossRefPubMedGoogle Scholar
  47. 47.
    Altomare DA, Testa JR (2005) Perturbations of the AKT signaling pathway in human cancer. Oncogene 24:7455–7464CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rebecca Hamm
    • 1
  • Yoshikazu Sugimoto
    • 2
  • Heinrich Steinmetz
    • 3
  • Thomas Efferth
    • 1
  1. 1.Institute of Pharmacy and Biochemistry, Department of Pharmaceutical BiologyJohannes Gutenberg UniversityMainzGermany
  2. 2.Division of Chemotherapy, Faculty of PharmacyKeio UniversityTokyoJapan
  3. 3.Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical BiotechnologySaarland UniversitySaarbrückenGermany

Personalised recommendations