Advertisement

Investigational New Drugs

, Volume 32, Issue 5, pp 860–870 | Cite as

In vitro and in vivo characterisation of ASP9521: a novel, selective, orally bioavailable inhibitor of 17β-hydroxysteroid dehydrogenase type 5 (17βHSD5; AKR1C3)

  • Aya Kikuchi
  • Takashi Furutani
  • Hidenori Azami
  • Kazushi Watanabe
  • Tatsuya Niimi
  • Yoshiteru Kamiyama
  • Sadao Kuromitsu
  • Edwina Baskin-Bey
  • Marten Heeringa
  • Taoufik Ouatas
  • Kentaro Enjo
PRECLINICAL STUDIES

Summary

Background Aldo-keto reductase 1C3 [AKR1C3;17β-hydroxysteroid dehydrogenase type 5 (17βHSD5)], plays a crucial role in persistent production of androgens despite castration, by catalysing conversion of the adrenal androgens dehydroepiandrosterone and androstenedione (AD) into androstenediol and testosterone (T). Hence, AKR1C3 is a promising therapeutic target in castration-resistant prostate cancer, as combination of an AKR1C3 inhibitor and a gonadotropin-releasing hormone analogue may lead to complete androgen blockade. This study describes the preclinical characterisation of the novel AKR1C3 inhibitor ASP9521. Methods The inhibitory effect of ASP9521 on AKR1C3-mediated conversion from AD into T was evaluated both in vitro and in vivo, using CWR22R xenografted mice. The effect of ASP9521 on PSA production and cell proliferation was tested using LNCaP cells stably expressing human AKR1C3 (LNCaP-AKR1C3). Pharmacokinetics of ASP9521 were studied in rats, dogs and cynomolgus monkeys. Results ASP9521 inhibited conversion of AD into T by recombinant human or cynomolgus monkey AKR1C3 in a concentration-dependent manner (IC50,human: 11 nmol/L; IC50,monkey: 49 nmol/L). ASP9521 showed >100-fold selectivity for AKR1C3 over the isoform AKR1C2. In LNCaP-AKR1C3 cells, ASP9521 suppressed AD-dependent PSA production and cell proliferation. In CWR22R xenografts, single oral administration of ASP9521 (3 mg/kg) inhibited AD-induced intratumoural T production and this inhibitory effect was maintained for 24 h. After oral administration, ASP9521 was rapidly eliminated from plasma, while its intratumoural concentration remained high. The bioavailability of ASP9521 after oral administration (1 mg/kg) was 35 %, 78 % and 58 % in rats, dogs and monkeys, respectively. Conclusions ASP9521 is a potent, selective, orally bioavailable AKR1C3 inhibitor.

Keywords

17beta-hydroxysteroid dehydrogenase type 5 Aldo-keto reductase 1C3 Androgen deprivation therapy Androgen synthesis Castration-resistant prostate cancer Testosterone 

Notes

Acknowledgments

The authors are grateful to Ismar Healthcare NV for assistance in writing of the manuscript, funded by Astellas Pharma Europe BV.

Ethical approval

All experiments were performed in accordance with the regulation of the Animal Ethics Committee of Astellas Pharma Inc. and with the applicable laws and regulations of Japan.

Conflicts of interest statement

A. Kikuchi, T. Furutani, H. Azami, K. Watanabe, T. Niimi, Y. Kamiyama, S. Kuromitsu and K. Enjo are employees of Astellas Pharma Inc, Japan. E. Baskin-Bey, M. Heeringa and T. Ouatas are employees of Astellas Pharma Europe BV.

References

  1. 1.
    Huggins C, Hodges CV (1941) Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:293–297Google Scholar
  2. 2.
    Huggins C, Stevens RE, Hodges CV (1941) Studies on prostatic cancer. II. The effects of castration on advanced carcinoma of the prostate gland. Arch Surg 43:209–223CrossRefGoogle Scholar
  3. 3.
    Mottet N, Bastian PJ, Bellmunt J, van den Bergh RCN, Bolla M, van Casteren NJ, Cornford P, Joniau S, Mason MD, Matveev V, van der Kwast TH, van der Poel H, Rouvière O, Wiegel T (2014) EAU guidelines on prostate cancer. Update April 2014. European Association of Urology. http://www.uroweb.org/guidelines/online-guidelines/. Accessed 25 April 2014
  4. 4.
    Harris WP, Mostaghel EA, Nelson PS, Montgomery B (2009) Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol 6:76–85. doi: 10.1038/ncpuro1296 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Zong Y, Goldstein AS (2013) Adaptation or selection − mechanisms of castration-resistant prostate cancer. Nat Rev Urol 10:90–98. doi: 10.1038/nrurol.2012.237 CrossRefPubMedGoogle Scholar
  6. 6.
    Karantanos T, Corn PG, Thompson TC (2013) Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 32:5501–5511. doi: 10.1038/onc.2013.206 PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Labrie F (2011) Blockade of testicular and adrenal androgens in prostate cancer treatment. Nat Rev Urol 8:73–80. doi: 10.1038/nrurol.2010.231 CrossRefPubMedGoogle Scholar
  8. 8.
    Adeniji AO, Chen M, Penning TM (2013) AKR1C3 as a target in castrate resistant prostate cancer. J Steroid Biochem Mol Biol 137:136–149. doi: 10.1016/j.jsbmb.2013.05.012 PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Fung KM, Samara ENS, Wong C, Metwalli A, Krlin R, Bane B, Liu CZ, Yang JT, Pitha JV, Culkin DJ, Kropp BP, Penning TM, Lin HK (2006) Increased expression of type 2 3α-hydroxysteroid dehydrogenase/type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) and its relationship with androgen receptor in prostate carcinoma. Endocr Relat Cancer 13:169–180. doi: 10.1677/erc.1.01048 CrossRefPubMedGoogle Scholar
  10. 10.
    Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V (1999) Characteristics of a highly labile human type 5 17β-hydroxysteroid dehydrogenase. Endocrinology 140:568–574. doi: 10.1210/endo.140.2.6531 PubMedGoogle Scholar
  11. 11.
    Lin HK, Steckelbroeck S, Fung KM, Jones AN, Penning TM (2004) Characterization of a monoclonal antibody for human aldo-keto reductase AKR1C3 (type 2 3α-hydroxysteroid dehydrogenase/type 5 17β-hydroxysteroid dehydrogenase); immunohistochemical detection in breast and prostate. Steroids 69:795–801. doi: 10.1016/j.steroids.2004.09.014 CrossRefPubMedGoogle Scholar
  12. 12.
    Azzarello J, Fung KM, Lin HK (2008) Tissue distribution of human AKR1C3 and rat homolog in the adult genitourinary system. J Histochem Cytochem 56:853–861. doi: 10.1369/jhc.2008.951384 PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Wako K, Kawasaki T, Yamana K, Suzuki K, Jiang S, Umezu H, Nishiyama T, Takahashi K, Hamakubo T, Kodama T, Naito M (2008) Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. J Clin Pathol 61:448–454. doi: 10.1136/jcp.2007.050906 CrossRefPubMedGoogle Scholar
  14. 14.
    Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66:2815–2825. doi: 10.1158/0008-5472.CAN-05-4000 CrossRefPubMedGoogle Scholar
  15. 15.
    Hamid ARAH, Pfeiffer MJ, Verhaegh GW, Schaafsma E, Brandt A, Sweep FCGJ, Sedelaar JPM, Schalken JA (2012) Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and therapeutic target for castration-resistant prostate cancer. Mol Med 18:1449–1455. doi: 10.2119/molmed.2012.00296 PubMedCentralCrossRefGoogle Scholar
  16. 16.
    Pfeiffer MJ, Smit FP, Sedelaar JPM, Schalken JA (2011) Steroidogenic enzymes and stem cell markers are upregulated during androgen deprivation in prostate cancer. Mol Med 17:657–664. doi: 10.2119/molmed.2010.00143 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS (2008) Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 68:4447–4454. doi: 10.1158/0008-5472.CAN-08-0249 PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Hofland J, van Weerden WM, Dits NFJ, Steenbergen J, van Leenders GJLH, Jenster G, Schröder FH, de Jong FH (2010) Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res 70:1256–1264. doi: 10.1158/0008-5472.CAN-09-2092 CrossRefPubMedGoogle Scholar
  19. 19.
    Jernberg E, Thysell E, Bovinder Ylitalo E, Rudolfsson S, Crnalic S, Widmark A, Bergh A, Wikström P (2013) Characterization of prostate cancer bone metastases according to expression levels of steroidogenic enzymes and androgen receptor splice variants. PLoS One 8:e77407. doi: 10.1371/journal.pone.0077407 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Mitsiades N, Sung CC, Schultz N, Danila DC, He B, Eedunuri VK, Fleisher M, Sander C, Sawyers CL, Scher HI (2012) Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Cancer Res 72:6142–6152. doi: 10.1158/0008-5472.CAN-12-1335 PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Loriot Y, Fizazi K, Jones RJ, Van den Brande J, Molife RL, Omlin A, James ND, Baskin-Bey E, Heeringa M, Baron B, Holtkamp G, Ouatas T, De Bono JS (2014) Safety, tolerability and anti-tumour activity of the androgen biosynthesis inhibitor ASP9521 in patients with metastatic castration-resistant prostate cancer: multi-centre phase I/II study. Invest New Drugs. doi: 10.1007/s10637-014-0101-x Google Scholar
  22. 22.
    Kazushi Watanabe, Akio Kakefuda, Minoru Yasuda, Yasushi Amano, Kentaro Enjo, Aya Kikuchi, Takashi Furutani, Yoichi Naritomi, Yukio Otsuka, Minoru Okada, Mitsuaki Ohta. Discovery of ASP9521, a novel, potent, selective 17β-HSD5 inhibitor. Poster presented at 246th American Chemical Society meeting, 8 September 2013, Indianapolis, Indiana, USA (MEDI 108). http://abstracts.acs.org//chem/246nm/program/divisionindex.php?nl=1&act=presentations&val=General+Poster+Session&ses=General+Poster+Session&prog=191040. Accessed 25 April 2014
  23. 23.
    Byrns MC, Mindnich R, Duan L, Penning TM (2012) Overexpression of aldo-keto reductase 1C3 (AKR1C3) in LNCaP cells diverts androgen metabolism towards testosterone resulting in resistance to the 5alpha-reductase inhibitor finasteride. J Steroid Biochem Mol Biol 130:7–15. doi: 10.1016/j.jsbmb.2011.12.012 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Rheault P, Charbonneau A, Luu-The V (1999) Structure and activity of the murine type 5 17beta-hydroxysteroid dehydrogenase gene (1). Biochim Biophys Acta 1447:17–24. doi: 10.1016/S0167-4781(99)00106-2 CrossRefPubMedGoogle Scholar
  25. 25.
    Schlegel BP, Ratnam K, Penning TM (1998) Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine. Biochemistry 37:11003–11. doi: 10.1021/bi980475r CrossRefPubMedGoogle Scholar
  26. 26.
    Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, Marck B, Matsumoto AM, Simon NI, Wang H, Chen S, Balk SP (2011) Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 71:6503–6513. doi: 10.1158/0008-5472.CAN-11-0532 PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, Nelson PS, Montgomery RB (2011) Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 17:5913–5925. doi: 10.1158/1078-0432.CCR-11-0728 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Yepuru M, Wu Z, Kulkarni A, Yin F, Barrett CM, Kim J, Steiner MS, Miller DD, Dalton JT, Narayanan R (2013) Steroidogenic enzyme AKR1C3 is a novel androgen receptor-selective coactivator that promotes prostate cancer growth. Clin Cancer Res 19:5613–5625. doi: 10.1158/1078-0432.CCR-13-1151 CrossRefPubMedGoogle Scholar
  29. 29.
    Veliça P, Davies NJ, Rocha PP, Schrewe H, Ride JP, Bunce CM (2009) Lack of functional and expression homology between human and mouse aldo-keto reductase 1C enzymes: implications for modelling human cancers. Mol Cancer 8:121. doi: 10.1186/1476-4598-8-121 PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Steckelbroeck S, Jin Y, Gopishetty S, Oyesanmi B, Penning TM (2004) Human cytosolic 3α-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3β-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action. J Biol Chem 279:10784–10795. doi: 10.1074/jbc.M313308200 CrossRefPubMedGoogle Scholar
  31. 31.
    Ji Q, Chang L, Stanczyk FZ, Ookhtens M, Sherrod A, Stolz A (2007) Impaired dihydrotestosterone catabolism in human prostate cancer: critical role of AKR1C2 as a pre-receptor regulator of androgen receptor signaling. Cancer Res 67:1361–1369. doi: 10.1158/0008-5472.CAN-06-1593 CrossRefPubMedGoogle Scholar
  32. 32.
    Attard G, Reid AHM, Yap TA, Raynaud F, Dowsett M, Settatree S, Barrett M, Parker C, Martins V, Folkerd E, Clark J, Cooper CS, Kaye SB, Dearnaley D, Lee G, de Bono JS (2008) Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 26:4563–4571. doi: 10.1200/JCO.2007.15.9749 CrossRefPubMedGoogle Scholar
  33. 33.
    Adeniji AO, Twenter BM, Byrns MC, Jin Y, Winkler JD, Penning TM (2011) Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3). Bioorg Med Chem Lett 21:1464–1468. doi: 10.1016/j.bmcl.2011.01.010 PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Watanabe K, Kakefuda A, Yasuda M, Enjo K, Kikuchi A, Furutani T, Naritomi Y, Otsuka Y, Okada M, Ohta M (2013) Discovery of 2-methyl-1-{1-[(5-methyl-1H-indol-2-yl)carbonyl]piperidin-4-yl} propan-2-ol: a novel, potent and selective type 5 17β-hydroxysteroid dehydrogenase inhibitor. Bioorg Med Chem 21:5261–5270. doi: 10.1016/j.bmc.2013.06.025 CrossRefPubMedGoogle Scholar
  35. 35.
    Chang KH, Li R, Papari-Zareei M, Watumull L, Zhao YD, Auchus RJ, Sharifi N (2011) Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer. Proc Natl Acad Sci U S A 108:13728–13733. doi: 10.1073/pnas.1107898108 PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Mohler JL, Titus MA, Bai S, Kennerley BJ, Lih FB, Tomer KB, Wilson EM (2011) Activation of the androgen receptor by intratumoral bioconversion of androstanediol to dihydrotestosterone in prostate cancer. Cancer Res 71:1486–1496. doi: 10.1158/0008-5472.CAN-10-1343 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aya Kikuchi
    • 1
  • Takashi Furutani
    • 2
  • Hidenori Azami
    • 3
  • Kazushi Watanabe
    • 3
  • Tatsuya Niimi
    • 3
  • Yoshiteru Kamiyama
    • 4
  • Sadao Kuromitsu
    • 5
  • Edwina Baskin-Bey
    • 6
  • Marten Heeringa
    • 7
  • Taoufik Ouatas
    • 7
  • Kentaro Enjo
    • 1
  1. 1.Research Portfolio & Science Laboratories, Institute for Drug Discovery ResearchAstellas Pharma Inc.IbarakiJapan
  2. 2.Product and Portfolio StrategyAstellas Pharma Inc.TokyoJapan
  3. 3.Medicinal Chemistry Research Laboratories, Institute for Drug Discovery ResearchAstellas Pharma Inc.IbarakiJapan
  4. 4.Analysis & Pharmacokinetics Research Laboratories, Institute for Drug Discovery ResearchAstellas Pharma Inc.IbarakiJapan
  5. 5.Bioscience Research Laboratories, Institute for Drug Discovery ResearchAstellas Pharma Inc.IbarakiJapan
  6. 6.Global Medical Science - OncologyAstellas Pharma Europe BVLeidenNetherlands
  7. 7.Global Clinical Pharmacology & Exploratory DevelopmentAstellas Pharma Europe BVLeidenNetherlands

Personalised recommendations