Investigational New Drugs

, Volume 31, Issue 5, pp 1136–1141 | Cite as

Genotype-dependent cooperation of ionizing radiation with BRAF inhibition in BRAF V600E-mutated carcinomas

  • Tina Dasgupta
  • Daphne A. Haas-Kogan
  • Xiaodong Yang
  • Aleksandra Olow
  • Daniel X. Yang
  • Ashley Gragg
  • Lisa A. Orloff
  • Sue S. YomEmail author


Background A substantial proportion of solid tumors carry the BRAF V600E mutation, which causes activation of the MEK/MAPK pathway and is a poor prognostic indicator. Patients with locally advanced human cancers are often treated with external beam radiation therapy. Given the association of Raf overactivation with radioresistance, we hypothesized that, in BRAF V600E-mutated carcinomas, there would be combinatorial activity between radiation and PLX4720, a specific BRAF V600E-inhibitor. Methods Two BRAF V600E-mutated cancer cell lines and one BRAF-V600E wildtype (WT) cancer cell line were obtained. We performed cell viability assays and clonogenic assays using combinations of radiation and PLX4720. We assessed MEK and MAPK phosphorylation at different PLX4720 concentrations with western blotting, and cell cycle progression was evaluated by flow cytometry. Results Our results show combinatorial, additive activity between radiation and PLX4720 in BRAF V600E-mutated cell lines, but not in the BRAF WT line. In BRAF V600E-mutated cells, there was a PLX4720 concentration-dependent decrease in MEK and MAPK phosphorylation. In cells with BRAF V600E mutations, PLX4720 caused cell cycle arrest at G1, and, when combined with radiation, caused a combined G1 and G2 cell cycle arrest; this pattern of cell cycle effects was not seen in the BRAF WT cell line. Conclusions These data suggest additive, combinatorial activity between radiation and PLX4720 in cancers carrying BRAF V600E mutations. Our data has potential for translation into the multimodality treatment of BRAF V600E-mutated cancers.


BRAF V600E PLX4720 PLX4032 vemurafenib Radiosensitization 



We thank Plexxikon, Inc. for providing PLX4720, and Dr. Brian L. West for this thoughtful advice and assistance during this study.

Author disclosures and conflict of interest

None. The authors report no conflict of interest.

Ethical standards

The submitted manuscript complies with the current laws of the country, the United States of America, in which the experiments and analysis were performed.


  1. 1.
    McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, Candido S, Libra M, Basecke J, Mijatovic S, Maksimovic-Ivanic D, Milella M, Tafuri A, Cocco L, Evangelisti C, Chiarini F, Martelli AM (2012) Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades. Oncotarget (9):954–87Google Scholar
  2. 2.
    Gokhale PC, McRae D, Monia BP, Bagg A, Rahman A, Dritschilo A, Kasid U (1999) Antisense raf oligodeoxyribonucleotide is a radiosensitizer in vivo. Antisense Nucleic Acid Drug Dev 9(2):191–201CrossRefGoogle Scholar
  3. 3.
    Smallridge RC, Marlow LA, Copland JA (2009) Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer 16(1):17–44. doi: CrossRefGoogle Scholar
  4. 4.
    Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, Janakiraman M, Solit D, Knauf JA, Tuttle RM, Ghossein RA, Fagin JA (2009) Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69(11):4885–4893. doi: CrossRefGoogle Scholar
  5. 5.
    Schiffman JD, Hodgson JG, VandenBerg SR, Flaherty P, Polley MY, Yu M, Fisher PG, Rowitch DH, Ford JM, Berger MS, Ji H, Gutmann DH, James CD (2010) Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Res 70(2):512–519. doi: CrossRefGoogle Scholar
  6. 6.
    Xing M (2010) Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 321(1):86–93. doi: CrossRefGoogle Scholar
  7. 7.
    Nucera C, Lawler J, Hodin R, Parangi S (2010) The BRAFV600E mutation: what is it really orchestrating in thyroid cancer? Oncotarget 1(8):751–756PubMedPubMedCentralGoogle Scholar
  8. 8.
    Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14(6):777–789. doi: CrossRefGoogle Scholar
  9. 9.
    Safaee Ardekani G, Jafarnejad SM, Tan L, Saeedi A, Li G (2012) The prognostic value of BRAF mutation in colorectal cancer and melanoma: a systematic review and meta-analysis. PLoS One 7(10):e47054. doi: CrossRefGoogle Scholar
  10. 10.
    Kasid U, Dritschilo A (2003) RAF antisense oligonucleotide as a tumor radiosensitizer. Oncogene 22(37):5876–5884. doi: CrossRefGoogle Scholar
  11. 11.
    Nucera C, Goldfarb M, Hodin R, Parangi S (2009) Role of B-Raf(V600E) in differentiated thyroid cancer and preclinical validation of compounds against B-Raf(V600E). Biochim Biophys Acta 1795(2):152–161. doi: PubMedGoogle Scholar
  12. 12.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur GA (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516. doi: CrossRefGoogle Scholar
  13. 13.
    Sala E, Mologni L, Truffa S, Gaetano C, Bollag GE, Gambacorti-Passerini C (2008) BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Res 6(5):751–759. doi: CrossRefGoogle Scholar
  14. 14.
    Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. doi: CrossRefGoogle Scholar
  15. 15.
    Xing J, Liu R, Xing M, Trink B (2011) The BRAFT1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032 (RG7204). Biochem Biophys Res Commun 404(4):958–962. doi: CrossRefGoogle Scholar
  16. 16.
    Salerno P, De Falco V, Tamburrino A, Nappi TC, Vecchio G, Schweppe RE, Bollag G, Santoro M, Salvatore G (2010) Cytostatic activity of adenosine triphosphate-competitive kinase inhibitors in BRAF mutant thyroid carcinoma cells. J Clin Endocrinol Metab 95(1):450–455. doi: CrossRefGoogle Scholar
  17. 17.
    Sambade MJ, Peters EC, Thomas NE, Kaufmann WK, Kimple RJ, Shields JM (2011) Melanoma cells show a heterogeneous range of sensitivity to ionizing radiation and are radiosensitized by inhibition of B-RAF with PLX-4032. Radiother Oncol J Eur Soc Ther Radiol Oncol 98(3):394–399. doi: CrossRefGoogle Scholar
  18. 18.
    Dasgupta T, Yang X, Hashizume R, Olow A, Kolkowitz I, Weiss W, Mueller S, Nicolaides T, James CD, Haas-Kogan DA (2012) Survival advantage with radiation combined with a selective BRAF V600E inhibitor in an orthotopic, intracranial model of BRAF V600E-mutated high-grade gliomas. Int J Radiat Oncol Biol Phys 84(3):S125CrossRefGoogle Scholar
  19. 19.
    Dasgupta T, Yom SS, Yang X, Sottero T, Nicolaides TP, James CD, Haas-Kogan DA (2010) B-Raf inhibitor PLX4720 enhances the activity of temozolamide and radiation in a human glioblastoma cell line. Int J Radiat Oncol Biol Phys 78(3):S169, abstract number 2992CrossRefGoogle Scholar
  20. 20.
    Nicolaides TP, Li H, Solomon DA, Hariono S, Hashizume R, Barkovich K, Baker SJ, Paugh BS, Jones C, Forshew T, Hindley GF, Hodgson JG, Kim JS, Rowitch DH, Weiss WA, Waldman TA, James CD (2011) Targeted therapy for BRAFV600E malignant astrocytoma. Clin Cancer Res Off J Am Assoc Cancer Res 17(24):7595–7604. doi: CrossRefGoogle Scholar
  21. 21.
    Mueller S, Yang X, Sottero TL, Gragg A, Prasad G, Polley MY, Weiss WA, Matthay KK, Davidoff AM, DuBois SG, Haas-Kogan DA (2011) Cooperation of the HDAC inhibitor vorinostat and radiation in metastatic neuroblastoma: efficacy and underlying mechanisms. Cancer Lett 306(2):223–229. doi: CrossRefGoogle Scholar
  22. 22.
    Schweppe RE, Klopper JP, Korch C, Pugazhenthi U, Benezra M, Knauf JA, Fagin JA, Marlow LA, Copland JA, Smallridge RC, Haugen BR (2008) Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J Clin Endocrinol Metab 93(11):4331–4341. doi: CrossRefGoogle Scholar
  23. 23.
    Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, Rutkowski P, Blank CU, Miller WH Jr, Kaempgen E, Martin-Algarra S, Karaszewska B, Mauch C, Chiarion-Sileni V, Martin AM, Swann S, Haney P, Mirakhur B, Guckert ME, Goodman V, Chapman PB (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380(9839):358–365. doi: CrossRefGoogle Scholar
  24. 24.
    Flaherty KT (2012) Dividing and conquering: controlling advanced melanoma by targeting oncogene-defined subsets. Clin Exp Metastasis 29(7):841–846. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tina Dasgupta
    • 1
  • Daphne A. Haas-Kogan
    • 1
  • Xiaodong Yang
    • 1
  • Aleksandra Olow
    • 1
  • Daniel X. Yang
    • 1
  • Ashley Gragg
    • 1
  • Lisa A. Orloff
    • 2
  • Sue S. Yom
    • 1
    • 2
    Email author
  1. 1.Department of Radiation OncologyUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.Department of Otolaryngology - Head and Neck SurgeryUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations