Investigational New Drugs

, Volume 31, Issue 6, pp 1539–1546 | Cite as

A phase I study of vorinostat in combination with bortezomib in patients with advanced malignancies

  • William R. Schelman
  • Anne M. Traynor
  • Kyle D. Holen
  • Jill M. Kolesar
  • Steven Attia
  • Tien Hoang
  • Jens Eickhoff
  • Zhisheng Jiang
  • Dona Alberti
  • Rebecca Marnocha
  • Joel M. Reid
  • Matthew M. Ames
  • Renee M. McGovern
  • Igor Espinoza-Delgado
  • John J. Wright
  • George Wilding
  • Howard H. Bailey
PHASE I STUDIES

Summary

Background A phase I study to assess the maximum-tolerated dose (MTD), dose-limiting toxicity (DLT), pharmacokinetics (PK) and antitumor activity of vorinostat in combination with bortezomib in patients with advanced solid tumors. Methods Patients received vorinostat orally once daily on days 1–14 and bortezomib intravenously on days 1, 4, 8 and 11 of a 21-day cycle. Starting dose (level 1) was vorinostat (400 mg) and bortezomib (0.7 mg/m2). Bortezomib dosing was increased using a standard phase I dose-escalation schema. PKs were evaluated during cycle 1. Results Twenty-three patients received 57 cycles of treatment on four dose levels ranging from bortezomib 0.7 mg/m2 to 1.5 mg/m2. The MTD was established at vorinostat 400 mg daily and bortezomib 1.3 mg/m2. DLTs consisted of grade 3 fatigue in three patients (1 mg/m2,1.3 mg/m2 and 1.5 mg/m2) and grade 3 hyponatremia in one patient (1.5 mg/m2). The most common grade 1/2 toxicities included nausea (60.9 %), fatigue (34.8 %), diaphoresis (34.8 %), anorexia (30.4 %) and constipation (26.1 %). Objective partial responses were observed in one patient with NSCLC and in one patient with treatment-refractory soft tissue sarcoma. Bortezomib did not affect the PKs of vorinostat; however, the Cmax and AUC of the acid metabolite were significantly increased on day 2 compared with day 1. Conclusions This combination was generally well-tolerated at doses that achieved clinical benefit. The MTD was established at vorinostat 400 mg daily × 14 days and bortezomib 1.3 mg/m2 on days 1, 4, 8 and 11 of a 21-day cycle.

Keywords

SAHA Vorinostat PS-341 Bortezomib Phase I 

References

  1. 1.
    Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579CrossRefPubMedGoogle Scholar
  2. 2.
    Arts J, de Schepper S, Van Emelen K (2003) Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem 10:2343–2350CrossRefPubMedGoogle Scholar
  3. 3.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428CrossRefPubMedGoogle Scholar
  4. 4.
    Amin HM, Saeed S, Alkan S (2001) Histone deacetylase inhibitors induce caspase-dependent apoptosis and downregulation of daxx in acute promyelocytic leukaemia with t(15;17). Br J Haematol 115:287–297CrossRefPubMedGoogle Scholar
  5. 5.
    Mitsiades N, Mitsiades CS, Richardson PG et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101:4055–4062CrossRefPubMedGoogle Scholar
  6. 6.
    Mitsiades CS, Mitsiades NS, McMullan CJ et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci U S A 101:540–545PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K (2003) Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 101:3236–3239CrossRefPubMedGoogle Scholar
  8. 8.
    Xu Y, Voelter-Mahlknecht S, Mahlknecht U (2005) The histone deacetylase inhibitor suberoylanilide hydroxamic acid down-regulates expression levels of Bcr-abl, c-Myc and HDAC3 in chronic myeloid leukemia cell lines. Int J Mol Med 15:169–172PubMedGoogle Scholar
  9. 9.
    Yu C, Rahmani M, Almenara J et al (2003) Histone deacetylase inhibitors promote STI571-mediated apoptosis in STI571-sensitive and -resistant Bcr/Abl+ human myeloid leukemia cells. Cancer Res 63:2118–2126PubMedGoogle Scholar
  10. 10.
    Mitsiades CS, Mitsiades N, Richardson PG, Treon SP, Anderson KC (2003) Novel biologically based therapies for Waldenstrom’s macroglobulinemia. Semin Oncol 30:309–312CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang C, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 125:1045–1052CrossRefPubMedGoogle Scholar
  12. 12.
    Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci U S A 97:10014–10019PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Huang L, Pardee AB (2000) Suberoylanilide hydroxamic acid as a potential therapeutic agent for human breast cancer treatment. Mol Med 6:849–866PubMedCentralPubMedGoogle Scholar
  14. 14.
    Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497PubMedGoogle Scholar
  15. 15.
    Butler LM, Agus DB, Scher HI et al (2000) Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60:5165–5170PubMedGoogle Scholar
  16. 16.
    Gillenwater AM, Zhong M, Lotan R (2007) Histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis through both mitochondrial and Fas (Cd95) signaling in head and neck squamous carcinoma cells. Mol Cancer Ther 6:2967–2975CrossRefPubMedGoogle Scholar
  17. 17.
    Peart MJ, Tainton KM, Ruefli AA et al (2003) Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res 63:4460–4471PubMedGoogle Scholar
  18. 18.
    Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Rajkumar SV, Richardson PG, Hideshima T, Anderson KC (2005) Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 23:630–639CrossRefPubMedGoogle Scholar
  20. 20.
    Nawrocki ST, Carew JS, Pino MS et al (2006) Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66:3773–3781CrossRefPubMedGoogle Scholar
  21. 21.
    Garcia-Mata R, Gao YS, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396CrossRefPubMedGoogle Scholar
  22. 22.
    Yang H, Zonder JA, Dou QP (2009) Clinical development of novel proteasome inhibitors for cancer treatment. Expert Opin Investig Drugs 18:957–971PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Davies AM, Lara PN Jr, Mack PC, Gandara DR (2007) Incorporating bortezomib into the treatment of lung cancer. Clin Cancer Res 13:s4647–s4651CrossRefPubMedGoogle Scholar
  24. 24.
    Kondagunta GV, Drucker B, Schwartz L et al (2004) Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol 22:3720–3725CrossRefPubMedGoogle Scholar
  25. 25.
    Giuliano M, Lauricella M, Calvaruso G et al (1999) The apoptotic effects and synergistic interaction of sodium butyrate and MG132 in human retinoblastoma Y79 cells. Cancer Res 59:5586–5595PubMedGoogle Scholar
  26. 26.
    Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S (2003) The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 102:3765–3774CrossRefPubMedGoogle Scholar
  27. 27.
    Shah JJ, Orlowski RZ (2009) Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 23(11):1964–1979Google Scholar
  28. 28.
    Place RF, Noonan EJ, Giardina C (2005) HDACs and the senescent phenotype of WI-38 cells. BMC Cell Biol 6:37PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Emanuele S, Lauricella M, Carlisi D et al (2007) SAHA induces apoptosis in hepatoma cells and synergistically interacts with the proteasome inhibitor Bortezomib. Apoptosis 12:1327–1338CrossRefPubMedGoogle Scholar
  30. 30.
    Carew JS, Medina EC, Esquivel JA 2nd et al (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14(10):2448–2459Google Scholar
  31. 31.
    Place RF, Noonan EJ, Giardina C (2005) HDAC inhibition prevents NF-kappa B activation by suppressing proteasome activity: down-regulation of proteasome subunit expression stabilizes I kappa B alpha. Biochem Pharmacol 70:394–406CrossRefPubMedGoogle Scholar
  32. 32.
    Parise RA, Holleran JL, Beumer JH, Ramalingam S, Egoran MJ (2006) A liquid chromatography-electrospray ionization tandem mass spectrometric assay for quantitation of the histone deacetylase inhibitor, vorinostat (suberoylanilide hydroxamicacid, SAHA) and its metabolites in human serum. J Chromatogr B Anal Technol Biomed Life Sci 840(2):108–115CrossRefGoogle Scholar
  33. 33.
    Siegel D, Hussein M, Belani C et al (2009) Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2:31PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Tsukamoto S, Yokosawa H (2009) Targeting the proteasome pathway. Expert Opin Ther Targets 13:605–621CrossRefPubMedGoogle Scholar
  35. 35.
    Maki RG, Kraft AS, Scheu K et al (2005) A multicenter Phase II study of bortezomib in recurrent or metastatic sarcomas. Cancer 103:1431–1438CrossRefPubMedGoogle Scholar
  36. 36.
    Traynor AM, Dubey S, Eickhoff JC et al (2009) Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 4:522–526PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Ramalingam SS, Parise RA, Ramanathan RK et al (2007) Phase I and pharmacokinetic study of vorinostat, a histone deacetylase inhibitor, in combination with carboplatin and paclitaxel for advanced solid malignancies. Clin Cancer Res 13:3605–3610CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • William R. Schelman
    • 1
  • Anne M. Traynor
    • 1
  • Kyle D. Holen
    • 1
  • Jill M. Kolesar
    • 1
  • Steven Attia
    • 1
  • Tien Hoang
    • 1
  • Jens Eickhoff
    • 1
  • Zhisheng Jiang
    • 1
  • Dona Alberti
    • 1
  • Rebecca Marnocha
    • 1
  • Joel M. Reid
    • 3
  • Matthew M. Ames
    • 3
  • Renee M. McGovern
    • 3
  • Igor Espinoza-Delgado
    • 2
  • John J. Wright
    • 2
  • George Wilding
    • 1
  • Howard H. Bailey
    • 1
  1. 1.University of Wisconsin Carbone Cancer CenterMadisonUSA
  2. 2.Clinical Treatment Evaluation ProgramNational Cancer InstituteBethesdaUSA
  3. 3.Mayo Clinic Cancer CenterRochesterUSA

Personalised recommendations