Skip to main content

Advertisement

Log in

A phase I study of everolimus and CHOP in newly diagnosed peripheral T-cell lymphomas

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Background We performed a phase I study to determine the dose and safety of everolimus as a combination chemotherapy in peripheral T-cell lymphoma (PTCL). Methods Four dose levels (2.5 to 10 mg) of everolimus from days 1 to 14 with CHOP (750 mg/m2 cyclophosphamide, 50 mg/m2 doxorubicin, and 1.4 mg/m2 (maximum 2 mg) vincristine on day 1, and 100 mg/day prednisone on days 1 to 5) every 21 days were planned. Results Fifteen patients newly diagnosed with stage III/IV PTCL were enrolled. One of 6 patients at dose level 2 (5 mg everolimus) had grade 3 hepatotoxicity and 3 of 6 patients at level 3 (7.5 mg everolimus) had grade 4 hematologic toxicities (two grade 4 thrombocytopenia and one grade 4 neutropenia with fever lasting more than 3 days). The recommended dose of everolimus for combination was 5 mg. There were no differences in steady state trough concentrations of everolimus between cycles 1 and 2 for all three dose levels. All evaluable patients achieved response (8 complete and 6 partial). Conclusions Everolimus (5 mg) can be safely combined with CHOP leading to a feasible and effective regimen for PTCL. The subsequent phase II is now in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  CAS  PubMed  Google Scholar 

  2. Giles FJ, Albitar M (2005) Mammalian target of rapamycin as a therapeutic target in leukemia. Curr Mol Med 5:653–661

    Article  CAS  PubMed  Google Scholar 

  3. Beevers CS, Li F, Liu L, Huang S (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119:757–764

    Article  CAS  PubMed  Google Scholar 

  4. Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG (2005) Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 205:498–506

    Article  CAS  PubMed  Google Scholar 

  5. Vega F, Medeiros LJ, Leventaki V et al (2006) Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66:6589–6597

    Article  CAS  PubMed  Google Scholar 

  6. Rudelius M, Pittaluga S, Nishizuka S et al (2006) Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 108:1668–1676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Uddin S, Hussain AR, Siraj AK et al (2006) Role of phosphatidylinositol 3′-kinase/AKT pathway in diffuse large B-cell lymphoma survival. Blood 108:4178–4186

    Article  CAS  PubMed  Google Scholar 

  8. Hipp S, Ringshausen I, Oelsner M, Bogner C, Peschel C, Decker T (2005) Inhibition of the mammalian target of rapamycin and the induction of cell cycle arrest in mantle cell lymphoma cells. Haematologica 90:1433–1434

    CAS  PubMed  Google Scholar 

  9. Wanner K, Hipp S, Oelsner M et al (2006) Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitises DLBCL cells to rituximab. Br J Haematol 134:475–484

    Article  CAS  PubMed  Google Scholar 

  10. Wlodarski P, Kasprzycka M, Liu X et al (2005) Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum. Cancer Res 65:7800–7808

    CAS  PubMed  Google Scholar 

  11. Yee KW, Zeng Z, Konopleva M et al (2006) Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 12:5165–5173

    Article  CAS  PubMed  Google Scholar 

  12. Tobinai K, Ogura M, Maruyama D et al (2010) Phase I study of the oral mammalian target of rapamycin inhibitor everolimus (RAD001) in Japanese patients with relapsed or refractory non-Hodgkin lymphoma. Int J Hematol 92:563–570

    Article  CAS  PubMed  Google Scholar 

  13. Johnston PB, Inwards DJ, Colgan JP et al (2010) A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am J Hematol 85:320–324

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Witzig TE, Reeder CB, LaPlant BR et al (2011) A phase II trial of the oral mTOR inhibitor everolimus in relapsed aggressive lymphoma. Leukemia 25:341–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Renner C, Zinzani PL, Gressin R et al (2012) A multicenter phase II trial (SAKK 36/06) of single-agent everolimus (RAD001) in patients with relapsed or refractory mantle cell lymphoma. Haematologica 97:1085–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Ascani S, Zinzani PL, Gherlinzoni F et al (1997) Peripheral T-cell lymphomas. Clinico-pathologic study of 168 cases diagnosed according to the R.E.A.L. Classification. Ann Oncol 8:583–592

    Article  CAS  PubMed  Google Scholar 

  17. Anderson JR, Armitage JO, Weisenburger DD (1998) Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol 9:717–720

    Article  CAS  PubMed  Google Scholar 

  18. Savage KJ (2007) Peripheral T-cell lymphomas. Blood Rev 21:201–216

    Article  CAS  PubMed  Google Scholar 

  19. Vose J, Armitage J, Weisenburger D (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26:4124–4130

    Article  PubMed  Google Scholar 

  20. Gallamini A, Zaja F, Patti C et al (2007) Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood 110:2316–2323

    Article  CAS  PubMed  Google Scholar 

  21. Kim SJ, Yoon DH, Kang HJ et al (2012) Bortezomib in combination with CHOP as first-line treatment for patients with stage III/IV peripheral T-cell lymphomas: a multicentre, single-arm, phase 2 trial. Eur J Cancer 48:3223–3231

    Article  CAS  PubMed  Google Scholar 

  22. Wendel HG, Malina A, Zhao Z et al (2006) Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 66:7639–7646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Haritunians T, Mori A, O’Kelly J, Luong QT, Giles FJ, Koeffler HP (2007) Antiproliferative activity of RAD001 (everolimus) as a single agent and combined with other agents in mantle cell lymphoma. Leukemia 21:333–339

    Article  CAS  PubMed  Google Scholar 

  24. Cejka D, Preusser M, Fuereder T et al (2008) mTOR inhibition sensitizes gastric cancer to alkylating chemotherapy in vivo. Anticancer Res 28:3801–3808

    CAS  PubMed  Google Scholar 

  25. Crazzolara R, Cisterne A, Thien M et al (2009) Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 113:3297–3306

    Article  CAS  PubMed  Google Scholar 

  26. Gu L, Zhou C, Liu H et al (2010) Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis. J Exp Clin Cancer Res 29:150

    Article  PubMed Central  PubMed  Google Scholar 

  27. Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586

    Article  PubMed  Google Scholar 

  28. O’Donnell A, Faivre S, Burris HA 3rd et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26:1588–1595

    Article  PubMed  Google Scholar 

  29. Darwiche N, Sinjab A, Abou-Lteif G et al (2011) Inhibition of mammalian target of rapamycin signaling by everolimus induces senescence in adult T-cell leukemia/lymphoma and apoptosis in peripheral T-cell lymphomas. Int J Cancer 129:993–1004

    Article  CAS  PubMed  Google Scholar 

  30. Huang JJ, Li ZM, Huang Y et al (2012) Schedule-dependent inhibition of T-cell lymphoma cells by cotreatment with the mTOR inhibitor everolimus and anticancer drugs. Investig New Drugs 30:223–235

    Article  CAS  Google Scholar 

  31. Weisenburger DD, Savage KJ, Harris NL et al (2011) Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from the International Peripheral T-cell Lymphoma Project. Blood 117:3402–3408

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure of conflicts of interest

Won Seog Kim received the research funding in Novartis, and everolimus was donated by Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Seog Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.J., Kang, H.J., Kim, J.S. et al. A phase I study of everolimus and CHOP in newly diagnosed peripheral T-cell lymphomas. Invest New Drugs 31, 1514–1521 (2013). https://doi.org/10.1007/s10637-013-0015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-013-0015-z

Keywords

Navigation