Investigational New Drugs

, Volume 31, Issue 4, pp 812–822 | Cite as

Functional and molecular characterization of kinin B1 and B2 receptors in human bladder cancer: implication of the PI3Kγ pathway

  • V. Sgnaolin
  • T. C. B. Pereira
  • M. R. Bogo
  • R. Zanin
  • A. M. O. Battastini
  • F. B. Morrone
  • M. M. Campos


Kinins and their receptors have been recently implicated in cancer. Using functional and molecular approaches, we investigated the relevance of kinin B1 and B2 receptors in bladder cancer. Functional studies were conducted using bladder cancer cell lines, and human biopsies were employed for molecular studies. Both B1 des-Arg9-BK and B2 BK receptor agonists stimulated the proliferation of grade 3-derived T24 bladder cancer cells. Furthermore, treatment with B1 and B2 receptor antagonists (SSR240612 and HOE140) markedly inhibited the proliferation of T24 cells. Only higher concentrations of BK increased the proliferation of the grade 1 bladder cancer cell line RT4, while des-Arg9-BK completely failed to induce its proliferation. Real-time PCR revealed that the mRNA expression of kinin receptors, particularly B1 receptors, was increased in T24 cells relative to RT4 cells. Data from bladder cancer human biopsies revealed that B1 receptor expression was increased in all tumor samples and under conditions of chronic inflammation. We also show novel evidence demonstrating that the pharmacological inhibition of PI3Kγ (phosphatidylinositol 3-kinase) with AS252424, concentration-dependently reduced T24 cell proliferation induced by BK or des-Arg9-BK. Finally, the incubation of T24 cells with kinin agonists led to a marked activation of the PI3K/AKT and ERK 1/2 signaling pathways, whereas p38 MAP kinase remained unaffected. Kinin receptors, especially B1 receptors, appear to be implicated in bladder cancer progression. It is tempting to suggest that selective kinin antagonists might represent potential alternative therapies for bladder cancer.


Kinins B1 and B2 receptors T24 and RT4 bladder cancer cells Human biopsies PI3Kγ MAP kinases 



This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and by the FINEP research grant “Implantação, Modernização e Qualificação de Estrutura de Pesquisa da PUCRS” (PUCRSINFRA) # 01.11.0014-00. The manuscript was revised by American Journal Experts for English editing.

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300PubMedCrossRefGoogle Scholar
  2. 2.
    Soloway MS, Sofer M, Vaidya A (2002) Contemporary management of stage T1 transitional cell carcinoma of the bladder. J Urol 167:1573–1583PubMedCrossRefGoogle Scholar
  3. 3.
    Saad A, Hanbury DC, McNicholas TA, Boustead GB, Morgan S, Woodman AC (2002) A study comparing various noninvasive methods of detecting bladder cancer in urine. BJU Int 89:369–373PubMedCrossRefGoogle Scholar
  4. 4.
    Sylvester RJ, Van Der MA, Lamm DL (2002) Intravesical bacillus calmette-guerin reduces the risk of progression in patients with superficial bladder cancer: a metaanalysis of the published results of randomized clinical trials. J Urol 168:1964–1970PubMedCrossRefGoogle Scholar
  5. 5.
    Jordan AM, Weingarten J, Murphy WM (1987) Transitional cell neoplasms of the urinary bladder. Can biologic potential be predicted from histologic grading? Cancer 60:2766–2774PubMedCrossRefGoogle Scholar
  6. 6.
    Lopez-Beltran A, Cheng L, Mazzucchelli R, Bianconi M, Blanca A, Scarpelli M, Montironi R (2008) Morphological and molecular profiles and pathways in bladder neoplasms. Anticancer Res 28:2893–2900PubMedGoogle Scholar
  7. 7.
    Cheng L, Zhang S, Maclennan GT, Williamson SR, Lopez-Beltran A, Montironi R (2011) Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol 42:455–481PubMedCrossRefGoogle Scholar
  8. 8.
    Golijanin DJ, Kakiashvili D, Madeb RR, Messing EM, Lerner SP (2006) Chemoprevention of bladder cancer. World J Urol 24:445–472PubMedCrossRefGoogle Scholar
  9. 9.
    Vineis P, Pirastu R (1997) Aromatic amines and cancer. Cancer Causes Control 8:346–355PubMedCrossRefGoogle Scholar
  10. 10.
    Jacobs BL, Lee CT, Montie JE (2010) Bladder cancer in 2010: how far have we come? CA Cancer J Clin 60:244–272PubMedCrossRefGoogle Scholar
  11. 11.
    Campos MM, Leal PC, Nunes RA, Calixto JB (2006) Non-peptide antagonists for kinin B1 receptors: new insight sinto their therapeutic potential for the management of inflammation and pain. Trends Pharmacol Sci 27:646–651PubMedCrossRefGoogle Scholar
  12. 12.
    Regoli D, Barabe J (1980) Pharmacology of bradykinin and related kinins. Pharmacol Rev 32:1–46PubMedGoogle Scholar
  13. 13.
    Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM (2004) Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 143:803–818PubMedCrossRefGoogle Scholar
  14. 14.
    Leeb-Lundberg LM, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77PubMedCrossRefGoogle Scholar
  15. 15.
    Ehrenfeld P, Figueroa CD, Bhoola KD (2011) Kinin: kallikreins and kinins in cancer. In: Bader M, editor. Kinin. De Gruyter. pp. 217–245Google Scholar
  16. 16.
    Mahabeer R, Bhoola KD (2000) Kallikrein and kinin receptor genes. Pharmacol Ther 88:77–89PubMedCrossRefGoogle Scholar
  17. 17.
    Stewart JM (2003) Bradykinin antagonists as anti-cancer agents. Curr Pharm Des 9:2036–2042PubMedCrossRefGoogle Scholar
  18. 18.
    Figueroa CD, Ehrenfeld P, Bhoola KD (2012) Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets 16:299–312PubMedCrossRefGoogle Scholar
  19. 19.
    Bhoola K, Ramsaroop R, Plendl J, Cassim B, Dlamini Z, Naicker S (2001) Kallikrein and kinin receptor expression in inflammation and cancer. Biol Chem 382:77–89PubMedCrossRefGoogle Scholar
  20. 20.
    Wang JW, Su W, Law YP, Lu CH, Chen YC, Wang JL, Chang HJ, Chen WC, Jan CR (2001) Mechanism of bradykinin-induced Ca2+ mobilization in MG63 human osteosarcoma cells. Horm Res 55:265–270PubMedCrossRefGoogle Scholar
  21. 21.
    Ishihara K, Hayash I, Yamashina S, Majima M (2001) A potential role of bradykinin in angiogenesis and growth of S-180 mouse tumors. Jpn J Pharmacol 87:318–326PubMedCrossRefGoogle Scholar
  22. 22.
    Ishihara K, Kamata M, Hayashi I, Yamashina S, Majima M (2002) Roles of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol 2:499–509PubMedCrossRefGoogle Scholar
  23. 23.
    Raidoo DM, Sawant S, Mahabeer R, Bhoola KD (1999) Kinin receptors are expressed in human astrocytic tumour cells. Immunopharmacology 43:255–263PubMedCrossRefGoogle Scholar
  24. 24.
    Taub JS, Guo R, Leeb-Lundberg LM, Madden JF, Daaka Y (2003) Bradykinin receptor subtype 1 expression and function in prostate cancer. Cancer Res 63:2037–2041PubMedGoogle Scholar
  25. 25.
    Gera L, Stewart JM, Fortin JP, Morissette G, Marceau F (2008) Structural modification of the highly potent peptide bradykinin B1 receptor antagonist B9958. Int Immunopharmacol 8:289–292PubMedCrossRefGoogle Scholar
  26. 26.
    Zhao Y, Xue Y, Liu Y, Fu W, Jiang N, An P, Wang P, Yang Z, Wang Y (2005) Study of correlation between expression of bradykinin B2 receptor and pathological grade in human gliomas. Br J Neurosurg 19:322–326PubMedCrossRefGoogle Scholar
  27. 27.
    Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Müller-Esterl W, Maeda H (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98:29–35PubMedCrossRefGoogle Scholar
  28. 28.
    Stella J, Bavaresco L, Braganhol E, Rockenbach L, Farias PF, Wink MR, Azambuja AA, Barrios CH, Morrone FB, Oliveira-Battastini AM (2010) Differential ectonucleotidase expression in human bladder cancer cell lines. Urol Oncol 28:260–267PubMedCrossRefGoogle Scholar
  29. 29.
    Molina L, Matus CE, Astroza A, Pavicic F, Tapia E, Toledo C, Perez JA, Nualart F, Gonzalez CB, Burgos RA, Figueroa CD, Ehrenfeld P, Poblete MT (2009) Stimulation of the bradykinin B1 receptor induces the proliferation of estrogen-sensitive breast cancer cells and activates the ERK 1/2 signaling pathway. Breast Cancer Res Treat 118:499–510PubMedCrossRefGoogle Scholar
  30. 30.
    Gougat J, Ferrari B, Sarran L, Planchenault C, Poncelet M, Maruani J, Alonso R, Cudennec A, Croci T, Guagnini F, Urban-Szabo K, Martinolle JP, Soubrié P, Finance O, Le Fur G (2004) SSR240612 [(2R)-2-[((3R)-3-(1,3-Benzodioxol-5-yl)-3-{[(6-methoxy-2-naphthyl)sulfonyl]amino}propanoyl) amino]-3-(4-{[2R,6S)-2,6-dimethylpiperidinyl]methyl}phenyl)-N-isopropyl-nmethylpropanamide hydrochloride], a New nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 309:661–669PubMedCrossRefGoogle Scholar
  31. 31.
    Andoh T, Akira A, Saiki I, Kuraishi Y (2010) Bradykinin increases the secretion and expression of endothelin-1 through kinin B2 receptors in melanoma cells. Peptides 31:238–241PubMedCrossRefGoogle Scholar
  32. 32.
    Pomel V, Klicic J, Covini D, Church DD, Shaw JP, Roulin K, Burgat-Charvillon F, Valognes D, Camps M, Chabert C, Gillieron C, Françon B, Perrin D, Leroy D, Gretener D, Nichols A, Vitte PA, Carboni S, Rommel C, Schwarz MK, Rückle T (2006) Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma. J Med Chem 49:3857–3871PubMedCrossRefGoogle Scholar
  33. 33.
    Rho HW, Lee BC, Choi ES, Choi IJ, Lee YS, Goh SH (2010) Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR. BMC Cancer 10:240PubMedCrossRefGoogle Scholar
  34. 34.
    Bertram C, Misso N, Fogel-Petrovic M, Figueroa C, Thompson PJ, Bhoola KD (2007) Comparison of kinin B1 and B2 receptor expression in neutrophils of asthmatic and non-asthmatic subjects. Int Immunopharmacol 7:1862–1868PubMedCrossRefGoogle Scholar
  35. 35.
    Velarde V, de La Cerda PM, Duarte C, Arancibia F, Abbott E, González A, Moreno F, Jaffa AA (2004) Role of reactive oxygen species in bradykinininduced proliferation of vascular smooth muscle cells. Biol Res 37:419–430PubMedCrossRefGoogle Scholar
  36. 36.
    Greco S, Muscella A, Elia MG, Romano S, Storelli C, Marsigliante S (2004) Mitogenic signalling by B2 bradykinin receptor in epithelial breast cells. J Cell Physiol 201:84–96PubMedCrossRefGoogle Scholar
  37. 37.
    Lu DY, Tang CH, Yeh WL, Wong KL, Lin CP, Chen YH, Lai CH, Chen YF, Leung YM, Fu WM (2009) SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/AKT, ERK, and NF-kappaB-dependent pathway in microglia. Eur J Pharmacol 613:146–154PubMedCrossRefGoogle Scholar
  38. 38.
    Bhoola KD, Misso N, Naran A, Thompson PJ (2007) Current status of tissue kallikrein inhibitors: importance in cancer. Curr Opin Investig Drugs 8:462–468PubMedGoogle Scholar
  39. 39.
    Stewart JM, Gera L, Chan DC, Bunn PA Jr, York EJ, Simkeviciene V, Helfrich B (2002) Bradykinin-related compounds as new drugs for cancer and inflammation. Can J Physiol Pharmacol 80:275–280PubMedCrossRefGoogle Scholar
  40. 40.
    Jutras S, Bachvarova M, Keita M, Bascands JP, Mes-Masson AM, Stewart JM, Bachvarov D (2010) Strong cytotoxic effect of the bradykinin antagonist BKM-570 in ovarian cancer cells – analysis of the molecular mechanisms of its antiproliferative action. FEBS J 277:5146–5160PubMedCrossRefGoogle Scholar
  41. 41.
    Wang YB, Peng C, Liu YH (2007) Low dose of bradykinin selectively increases intracellular calcium in glioma cells. J Neurol Sci 258:44–51PubMedCrossRefGoogle Scholar
  42. 42.
    Zelawski W, Machnik G, Nowaczyk G, Plewka D, Lorenc Z, Sosada K, Stadnicki A (2006) Expression and localisation of kinin receptors in colorectal polyps. Int Immunopharmacol 6:997–1002PubMedCrossRefGoogle Scholar
  43. 43.
    Moodley R, Snyman C, Odhav B, Bhoola KD (2005) Visualisation of transforming growth factor-beta 1, tissue kallikrein, and kinin and transforming growth factor-beta receptors on human clear-cell renal carcinoma cells. Biol Chem 386:375–382PubMedCrossRefGoogle Scholar
  44. 44.
    Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptors for kinins. Pharmacol Rev 50:357–386PubMedGoogle Scholar
  45. 45.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657PubMedCrossRefGoogle Scholar
  46. 46.
    Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-AKT pathway in human cancer: rationale and promise. Cancer Cell 4:257–262PubMedCrossRefGoogle Scholar
  47. 47.
    Shaw RJ, Cantley LC (2006) Ras, PI3K and mTOR signalling controls tumour cell growth. Nature 25:424–430CrossRefGoogle Scholar
  48. 48.
    Spitzenberg V, König C, Ulm S, Marone R, Röpke L, Müller JP, Grün M, Bauer R, Rubio I, Wymann MP, Voigt A, Wetzker R (2010) Targeting PI3K in neuroblastoma. J Cancer Res Clin Oncol 136:1881–1890PubMedCrossRefGoogle Scholar
  49. 49.
    Knowles MA, Platt FM, Ross RL, Hurst CD (2009) Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev 28:305–316PubMedCrossRefGoogle Scholar
  50. 50.
    Greco S, Elia MG, Muscella A, Romano S, Storelli C (2005) Bradykinin stimulates cell proliferation through an extracellularregulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. J Endocrinol 186:291–301PubMedCrossRefGoogle Scholar
  51. 51.
    Greco S, Storelli C, Marsigliante S (2006) Protein kinase C (PKC)-delta/-epsilon mediate the PKC/AKT-dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 in MCF-7 cells stimulated by bradykinin. J Endocrinol 188:79–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. Sgnaolin
    • 1
  • T. C. B. Pereira
    • 1
  • M. R. Bogo
    • 1
  • R. Zanin
    • 2
  • A. M. O. Battastini
    • 3
  • F. B. Morrone
    • 4
  • M. M. Campos
    • 1
  1. 1.Prostgraduate Program in Medicine and Health SciencesPontificia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Institute of Toxicology and PharmacologyPontificia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  3. 3.Departament of BiochemistryUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Prostgraduate Program in Medicine and Health SciencesPUCRSPorto AlegreBrazil

Personalised recommendations