Advertisement

Investigational New Drugs

, Volume 31, Issue 1, pp 30–38 | Cite as

Activity of the MEK inhibitor selumetinib (AZD6244; ARRY-142886) in nasopharyngeal cancer cell lines

  • Brigette B. Y. MaEmail author
  • Vivian W. Y. Lui
  • Crystal S. Cheung
  • Cecilia P. Y. Lau
  • Kakiu Ho
  • Edwin P. Hui
  • Stephen K. W. Tsui
  • Margaret H. Ng
  • S. H. Cheng
  • Patrick K. S. Ng
  • Sai Wai Tsao
  • Anthony T. C. Chan
PRECLINICAL STUDIES

Summary

This study evaluated the preclinical activity of selumetinib (AZD6244, ARRY-142866), an inhibitor of the mitogen-activated protein kinase kinase (MAPKK or MEK1/2) in 6 nasopharyngeal cancer (NPC) cell lines. Selumetinib could achieve up to 90 % inhibition of cell growth with the respective IC50 values in NPC cell lines as follow: HK1 = 0.04 μM, HK1-LMP1(B95.8) = 0.17 μM, HONE-1-EBV = 0.46 μM, HONE-1 = 1.79 μM, CNE-2 = 2.20 μM and C666-1 > 10 μM. The drug-sensitive cell lines HK1, HK1-LMP1(B95.8) and HONE-1-EBV have higher basal expression of phosphorylated (pi)-MAPK than the less sensitive cell lines. BRAF mutations were not detected in all 6 cell lines. Re-introduction of the EBV genome into HONE-1 cells, generating the HONE-1-EBV cell line, seemed to result in elevated expression of pi-MAPK and sensitivity to selumetinib when compared with the parental HONE-1 cells. At a concentration of 0.5 μM and 5 μM, selumetinib induced apoptosis (as indicated by cleaved PARP expression and caspase 3 induction), and G0/G1 cycle arrest in HONE-1-EBV and HK1-LMP1(B95.8) cells. The combination of selumetinib (at IC25 concentration) and the EGFR tyrosine kinase inhibitor, gefitinib (at concentrations of 0.1, 3 and 9 μM) resulted in synergistic growth inhibition in HK1-LMP1(B95.8) cells. The combination of selumetinib (at IC25 concentration) and cisplatin (at concentrations of 0.1, 0.4, 0.8 and 2 μM) resulted in synergistic growth inhibition in HONE-1 and HONE-1-EBV cells. This result suggests that selumetinib alone or in combination with gefitinib or cisplatin maybe a promising strategy against NPC. Further studies are warranted.

Keywords

Selumetinib Gefitinib Nasopharyngeal cancer MEK BRAF mutation 

Notes

Acknowledgements

This work was funded by the Direct Grant for Research (Ref: 2006.2.015), The Chinese University of Hong Kong. Selumetinib was kindly provided by Astra Zeneca Ltd (UK) via the Cancer Therapy Evaluation Program, NCI, Bethesda, USA. VWYL is supported by research fund from the Pittsburgh Foundation, the Patricia L. Knebel Fund. This study was presented in part at the American Association of Cancer Research Special Symposium on ‘Infection and Cancer’ (abstract #C10), December 2008.

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

  1. 1.
    Beeram M, Patnaik A, Rowinsky EK (2005) Raf: a strategic target for therapeutic development against cancer. J Clin Oncol 23(27):6771–6790PubMedCrossRefGoogle Scholar
  2. 2.
    Beeram M, Patnaik A, Rowinsky EK (2003) Regulation of c-Raf-1: therapeutic implications. Clin Adv Hematol Oncol 1(8):476–481PubMedGoogle Scholar
  3. 3.
    Tsao SW, Tramoutanis G, Dawson CW, Lo AK, Huang DP (2002) The significance of LMP1 expression in nasopharyngeal carcinoma. Semin Cancer Biol 12(6):473–487PubMedCrossRefGoogle Scholar
  4. 4.
    Lo AK, Liu Y, Wang XH, Huang DP, Yuen PW, Wong YC, Tsao GS (2003) Alterations of biologic properties and gene expression in nasopharyngeal epithelial cells by the Epstein-Barr virus-encoded latent membrane protein 1. Lab Invest 83(5):697–709PubMedGoogle Scholar
  5. 5.
    Hui AB, Lo KW, Teo PM, To KF, Huang DP (2002) Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization. Int J Oncol 20(3):467–473PubMedGoogle Scholar
  6. 6.
    Ma B, Lui V, Ho K, Lau CPY, Ng M, Cheng SH, Tsang CM, Tsao SW, Shi M, Hui EP, Chan ATC. Preclinical evaluation of the dual PI3K-mTOR inhibitor BEZ235 in nasopharyngeal carcinoma cell lines. In Proc Am Assoc Cancer Res Meeting, 2010 abstract 1638 (poster)Google Scholar
  7. 7.
    Ma B, Lui V, Hui C, Lau C, Ng M, Tsao SW, Hui EP, Wong E, Li Y, Chan ATC. Preclinical evaluation of the AKT inhibitor MK2206 in NPC cell lines. In Proc Am Assoc Cancer Res Meeting, Chicago: 2012 Abstract 4602 (poster)Google Scholar
  8. 8.
    Or YY, Hui A, To KF, Lam CL, Lo KW (2006) PIK3CA mutations in nasopharyngeal carcinoma. Int J Cancer 118:1065–1067PubMedCrossRefGoogle Scholar
  9. 9.
    Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, Papa A, Nardella C, Cantley LC, Baselga J, Pandolfi PP (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074PubMedGoogle Scholar
  10. 10.
    Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R, Cockerill M, Cartlidge S, Smith PD (2007) AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 6(8):2209–2219PubMedCrossRefGoogle Scholar
  11. 11.
    Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ, Parry J, Smith D, Brandhuber BJ, Gross S, Marlow A, Hurley B, Lyssikatos J, Lee PA, Winkler JD, Koch K, Wallace E (2007) Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 13(5):1576–1583PubMedCrossRefGoogle Scholar
  12. 12.
    Yoon YK, Kim HP, Han SW, Hur HS, Oh do Y, Im SA, Bang YJ, Kim TY (2009) Combination of EGFR and MEK1/2 inhibitor shows synergistic effects by suppressing EGFR/HER3-dependent AKT activation in human gastric cancer cells. Mol Cancer Ther 8(9):2526–2536PubMedCrossRefGoogle Scholar
  13. 13.
    Ma BB, Lui VW, Poon FF, Wong SC, To KF, Wong E, Chen H, Lo KW, Tao Q, Chan AT, Ng MH, Cheng SH (2009) Preclinical activity of gefitinib in non-keratinizing nasopharyngeal carcinoma cell lines and biomarkers of response. Invest New Drugs 28(3):326–333PubMedCrossRefGoogle Scholar
  14. 14.
    Zuo Q, Shi M, Chen J, Liao W (2011) The Ras signaling pathway mediates cetuximab resistance in nasopharyngeal carcinoma. Biomed Pharmacother 65(3):168–174PubMedCrossRefGoogle Scholar
  15. 15.
    Yoon H, Min JK, Lee JW, Kim DG, Hong HJ (2011) Acquisition of chemoresistance in intrahepatic cholangiocarcinoma cells by activation of AKT and extracellular signal-regulated kinase (ERK)1/2. Biochem Biophys Res Commun 405(3):333–337PubMedCrossRefGoogle Scholar
  16. 16.
    Brozovic A, Osmak M (2007) Activation of mitogen-activated protein kinases by cisplatin and their role in cisplatin-resistance. Cancer Lett 251(1):1–16PubMedCrossRefGoogle Scholar
  17. 17.
    Wang J, Zhou JY, Wu GS (2007) ERK-dependent MKP-1-mediated cisplatin resistance in human ovarian cancer cells. Cancer Res 67(24):11933–11941PubMedCrossRefGoogle Scholar
  18. 18.
    Sung FL, Poon TC, Hui EP, Ma BB, Liong E, To KF, Huang DP, Chan AT (2005) Antitumor effect and enhancement of cytotoxic drug activity by cetuximab in nasopharyngeal carcinoma cells. Vivo 19(1):237–245Google Scholar
  19. 19.
    Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681PubMedCrossRefGoogle Scholar
  20. 20.
    Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439(7074):358–362PubMedCrossRefGoogle Scholar
  21. 21.
    Friday BB, Yu C, Dy GK, Smith PD, Wang L, Thibodeau SN, Adjei AA (2008) BRAF V600E disrupts AZD6244-induced abrogation of negative feedback pathways between extracellular signal-regulated kinase and Raf proteins. Cancer Res 68(15):6145–6153PubMedCrossRefGoogle Scholar
  22. 22.
    Haass NK, Sproesser K, Nguyen TK, Contractor R, Medina CA, Nathanson KL, Herlyn M, Smalley KS (2008) The mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor AZD6244 (ARRY-142886) induces growth arrest in melanoma cells and tumor regression when combined with docetaxel. Clin Cancer Res 14(1):230–239PubMedCrossRefGoogle Scholar
  23. 23.
    Huynh H, Chow PK, Soo KC (2007) AZD6244 and doxorubicin induce growth suppression and apoptosis in mouse models of hepatocellular carcinoma. Mol Cancer Ther 6(9):2468–2476PubMedCrossRefGoogle Scholar
  24. 24.
    Mainou BA, Everly DN Jr, Raab-Traub N (2007) Unique signaling properties of CTAR1 in LMP1-mediated transformation. J Virol 81(18):9680–9692PubMedCrossRefGoogle Scholar
  25. 25.
    Roberts ML, Cooper NR (1998) Activation of a ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformation. Virology 240(1):93–99PubMedCrossRefGoogle Scholar
  26. 26.
    Dawson CW, Laverick L, Morris MA, Tramoutanis G, Young LS (2008) Epstein-Barr virus-encoded LMP1 regulates epithelial cell motility and invasion via the ERK-MAPK pathway. J Virol 82(7):3654–3664PubMedCrossRefGoogle Scholar
  27. 27.
    Lo AK, Lo KW, Tsao SW, Wong HL, Hui JW, To KF, Hayward DS, Chui YL, Lau YL, Takada K, Huang DP (2006) Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia 8(3):173–180PubMedCrossRefGoogle Scholar
  28. 28.
    Chou CC, Chou MJ, Tzen CY (2009) PIK3CA mutation occurs in nasopharyngeal carcinoma but does not significantly influence the disease-specific survival. Med Oncol 26(3):322–326PubMedCrossRefGoogle Scholar
  29. 29.
    Halilovic E, She QB, Ye Q, Pagliarini R, Sellers WR, Solit DB, Rosen N (2010) PIK3CA mutation uncouples tumor growth and cyclin D1 regulation from MEK/ERK and mutant KRAS signaling. Cancer Res 70(17):6804–6814PubMedCrossRefGoogle Scholar
  30. 30.
    Yoon J, Koo KH, Choi KY (2011) MEK1/2 inhibitors AS703026 and AZD6244 may be potential therapies for KRAS mutated colorectal cancer that is resistant to EGFR monoclonal antibody therapy. Cancer Res 71(2):445–453PubMedCrossRefGoogle Scholar
  31. 31.
    Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA (2011) BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal 3(149):84Google Scholar
  32. 32.
    Balmanno K, Chell SD, Gillings AS, Hayat S, Cook SJ (2009) Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int J Cancer 125(10):2332–2341PubMedCrossRefGoogle Scholar
  33. 33.
    Dai B, Meng J, Peyton M, Girard L, Bornmann WG, Ji L, Minna JD, Fang B, Roth JA (2011) STAT3 mediates resistance to MEK inhibitor through microRNA miR-17. Cancer Res 71(10):3658–3668PubMedCrossRefGoogle Scholar
  34. 34.
    Ma B, Hui EP, King A, To KF, Mo F, Leung SF, Kam M, Lo YM, Zee B, Mok T, Ahuja A, Chan AT (2008) A phase II study of gefitinib in patients with metastatic or locoregionally recurrent nasopharyngeal carcinoma and evaluation of plasma Epstein-Barr virus DNA as a biomarker of efficacy. Cancer Chemother Pharmacol 62(1):59–64PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Brigette B. Y. Ma
    • 1
    • 6
    Email author
  • Vivian W. Y. Lui
    • 2
  • Crystal S. Cheung
    • 1
  • Cecilia P. Y. Lau
    • 1
  • Kakiu Ho
    • 1
  • Edwin P. Hui
    • 1
  • Stephen K. W. Tsui
    • 3
  • Margaret H. Ng
    • 4
  • S. H. Cheng
    • 4
  • Patrick K. S. Ng
    • 3
  • Sai Wai Tsao
    • 5
  • Anthony T. C. Chan
    • 1
  1. 1.State Key Laboratory in Oncology in South China, Sir Y.K. Pao Centre for Cancer, Department of Clinical Oncology, Cancer Drug Testing UnitHong Kong Cancer Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong KongShatinChina
  2. 2.Department of OtolaryngologyUniversity of PittsburghPittsburghUSA
  3. 3.School of Biomedical SciencesFaculty of Medicine, The Chinese University of Hong KongShatinChina
  4. 4.Department of Anatomical & Cellular PathologyFaculty of Medicine, The Chinese University of Hong KongShatinChina
  5. 5.Department of AnatomyUniversity of Hong KongShatinChina
  6. 6.Department of Clinical OncologyPrince of Wales HospitalShatinChina

Personalised recommendations