Investigational New Drugs

, Volume 30, Issue 6, pp 2148–2160 | Cite as

The irreversible pan-HER inhibitor PF00299804 alone or combined with gemcitabine has an antitumor effect in biliary tract cancer cell lines

  • Hyun-Jin Nam
  • Hwang-Phill Kim
  • Young-Kwang Yoon
  • Sang-Hyun Song
  • Ah-Rum Min
  • Sae-Won Han
  • Seock-Ah Im
  • Tae-You Kim
  • Do-Youn OhEmail author
  • Yung-Jue Bang


Biliary tract cancer (BTC) is associated with poor survival and unresponsiveness to chemotherapy. Targeted therapies for BTC have been studied, and HER family members are promising therapeutic targets in BTC. In this study, we evaluated the efficacy of PF00299804, an irreversible pan-HER inhibitor, in eight BTC cell lines alone or combined with gemcitabine. PF00299804 potently inhibited the growth of two cell lines (SNU308 and SNU478) out of the eight BTC cell lines as a single agent. PF00299804 blocked HER family and downstream signaling pathways, inducing G1 arrest or apoptosis. Moreover, PF00299804 exerted synergistic effects with gemcitabine in seven of the eight BTC cell lines, possibly through the regulation of the genes involved in the response to gemcitabine, such as TS (thymidylate synthase), RRM1 (ribonucleotide reductase), and MAGEH1, which is negatively correlated with gemcitabine sensitivity. Our results support the need for further study of PF00299804 alone or combined with gemcitabine for the treatment of BTC.


PF00299804 Irreversible pan-HER inhibitor Gemcitabine Biliary tract cancer cell lines 



This study was partially supported by a grant from the Seoul National University Hospital (grant No: 03-2009-032-0), and in part by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093820).

Disclosure Statement

Yung-Jue Bang: Commercial research grant and consultant/advisory board from Pfizer Inc. Seock-Ah Im: Commercial research grant from Pfizer Inc. The other authors disclosed no potential conflicts of interest.

Supplementary material

10637_2011_9782_MOESM1_ESM.pdf (26 kb)
Supplementary Table 1 (PDF 26 kb)
10637_2011_9782_MOESM2_ESM.pdf (27 kb)
Supplementary Table 2 (PDF 26 kb)
10637_2011_9782_MOESM3_ESM.pdf (34 kb)
Supplementary Fig. 1 (PDF 34 kb)
10637_2011_9782_MOESM4_ESM.pdf (59 kb)
Supplementary Fig. 2 (PDF 58 kb)
10637_2011_9782_MOESM5_ESM.pdf (38 kb)
Supplementary Fig. 3 (PDF 37 kb)
10637_2011_9782_MOESM6_ESM.ppt (464 kb)
ESM 1 (PPT 463 kb)


  1. 1.
    de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM (1999) Biliary tract cancers. N Engl J Med 341:1368–1378PubMedCrossRefGoogle Scholar
  2. 2.
    Wiedmann M, Feisthammel J, Bluthner T, Tannapfel A, Kamenz T, Kluge A, Mossner J, Caca K (2006) Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib. Anticancer Drugs 17:783–795PubMedCrossRefGoogle Scholar
  3. 3.
    Kawamoto T, Krishnamurthy S, Tarco E, Trivedi S, Wistuba II, Li D, Roa I, Roa JC, Thomas MB (2007) HER Receptor family: novel candidate for targeted therapy for gallbladder and extrahepatic bile duct cancer. Gastrointest Cancer Res 1:221–227PubMedGoogle Scholar
  4. 4.
    Tonini G, Frato ME, Vincenzi B, Santini D (2010) Chemotherapy in biliary tract cancer. Eur Rev Med Pharmacol Sci 14:371–374PubMedGoogle Scholar
  5. 5.
    Tonini G, Virzi V, Fratto ME, Vincenzi B, Santini D (2009) Targeted therapy in biliary tract cancer: 2009 update. Future Oncol 5:1675–1684PubMedCrossRefGoogle Scholar
  6. 6.
    Harder J, Waiz O, Otto F, Geissler M, Olschewski M, Weinhold B, Blum HE, Schmitt-Graeff A, Opitz OG (2009) EGFR and HER2 expression in advanced biliary tract cancer. World J Gastroenterol 15:4511–4517PubMedCrossRefGoogle Scholar
  7. 7.
    Herberger B, Berger W, Puhalla H, Schmid K, Novak S, Brandstetter A, Pirker C, Gruenberger T, Filipits M (2009) Simultaneous blockade of the epidermal growth factor receptor/mammalian target of rapamycin pathway by epidermal growth factor receptor inhibitors and rapamycin results in reduced cell growth and survival in biliary tract cancer cells. Mol Cancer Ther 8:1547–1556PubMedCrossRefGoogle Scholar
  8. 8.
    Yoshikawa D, Ojima H, Iwasaki M, Hiraoka N, Kosuge T, Kasai S, Hirohashi S, Shibata T (2008) Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer 98:418–425PubMedCrossRefGoogle Scholar
  9. 9.
    Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, Imaoka S, Tsujimoto M, Higashiyama S, Monden M, Matsuura N (2001) Expression and clinical significance of the erbB family in intrahepatic cholangiocellular carcinoma. Pathol Res Pract 197:95–100PubMedCrossRefGoogle Scholar
  10. 10.
    Nakazawa K, Dobashi Y, Suzuki S, Fujii H, Takeda Y, Ooi A (2005) Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-met in biliary tract cancers. J Pathol 206:356–365PubMedCrossRefGoogle Scholar
  11. 11.
    Gwak GY, Yoon JH, Shin CM, Ahn YJ, Chung JK, Kim YA, Kim TY, Lee HS (2005) Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J Cancer Res Clin Oncol 131:649–652PubMedCrossRefGoogle Scholar
  12. 12.
    Leone F, Cavalloni G, Pignochino Y, Sarotto I, Ferraris R, Piacibello W, Venesio T, Capussotti L, Risio M, Aglietta M (2006) Somatic mutations of epidermal growth factor receptor in bile duct and gallbladder carcinoma. Clin Cancer Res 12:1680–1685PubMedCrossRefGoogle Scholar
  13. 13.
    Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116:191–203PubMedCrossRefGoogle Scholar
  14. 14.
    Mass RD (2004) The HER receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys 58:932–940PubMedCrossRefGoogle Scholar
  15. 15.
    Arteaga CL (2001) The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J Clin Oncol 19:32S–40SPubMedGoogle Scholar
  16. 16.
    Pignochino Y, Sarotto I, Peraldo-Neia C, Penachioni JY, Cavalloni G, Migliardi G, Casorzo L, Chiorino G, Risio M, Bardelli A, Aglietta M, Leone F (2010) Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas. BMC Cancer 10:631PubMedCrossRefGoogle Scholar
  17. 17.
    Xu L, Hausmann M, Dietmaier W, Kellermeier S, Pesch T, Stieber-Gunckel M, Lippert E, Klebl F, Rogler G (2010) Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines. BMC Cancer 10:302PubMedCrossRefGoogle Scholar
  18. 18.
    Yoshikawa D, Ojima H, Kokubu A, Ochiya T, Kasai S, Hirohashi S, Shibata T (2009) Vandetanib (ZD6474), an inhibitor of VEGFR and EGFR signalling, as a novel molecular-targeted therapy against cholangiocarcinoma. Br J Cancer 100:1257–1266PubMedCrossRefGoogle Scholar
  19. 19.
    Hidalgo M, Amador ML, Jimeno A, Mezzadra H, Patel P, Chan A, Nielsen ME, Maitra A, Altiok S (2006) Assessment of gefitinib- and CI-1040-mediated changes in epidermal growth factor receptor signaling in HuCCT-1 human cholangiocarcinoma by serial fine needle aspiration. Mol Cancer Ther 5:1895–1903PubMedCrossRefGoogle Scholar
  20. 20.
    Ariyama H, Qin B, Baba E, Tanaka R, Mitsugi K, Harada M, Nakano S (2006) Gefitinib, a selective EGFR tyrosine kinase inhibitor, induces apoptosis through activation of Bax in human gallbladder adenocarcinoma cells. J Cell Biochem 97:724–734PubMedCrossRefGoogle Scholar
  21. 21.
    Kiguchi K, Ruffino L, Kawamoto T, Ajiki T, Digiovanni J (2005) Chemopreventive and therapeutic efficacy of orally active tyrosine kinase inhibitors in a transgenic mouse model of gallbladder carcinoma. Clin Cancer Res 11:5572–5580PubMedCrossRefGoogle Scholar
  22. 22.
    Jimeno A, Rubio-Viqueira B, Amador ML, Oppenheimer D, Bouraoud N, Kulesza P, Sebastiani V, Maitra A, Hidalgo M (2005) Epidermal growth factor receptor dynamics influences response to epidermal growth factor receptor targeted agents. Cancer Res 65:3003–3010PubMedGoogle Scholar
  23. 23.
    Chang PY, Cheng MF, Lee HS, Hsieh CB, Yao NS (2010) Preliminary experience of cetuximab in the treatment of advanced-stage biliary tract cancer. Onkologie 33:45–47PubMedCrossRefGoogle Scholar
  24. 24.
    Tada M, Nakai Y, Sasaki T, Hamada T, Nagano R, Mohri D, Miyabayashi K, Yamamoto K, Kogure H, Kawakubo K, Ito Y, Yamamoto N, Sasahira N, Hirano K, Ijichi H, Tateishi K, Isayama H, Omata M, Koike K (2011) Recent progress and limitations of chemotherapy for pancreatic and biliary tract cancers. World J Clin Oncol 2:158–163PubMedCrossRefGoogle Scholar
  25. 25.
    Lubner SJ, Mahoney MR, Kolesar JL, Loconte NK, Kim GP, Pitot HC, Philip PA, Picus J, Yong WP, Horvath L, Van Hazel G, Erlichman CE, Holen KD (2010) Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study. J Clin Oncol 28:3491–3497PubMedCrossRefGoogle Scholar
  26. 26.
    Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, Donehower RC, Fitch T, Picus J, Erlichman C (2006) Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol 24:3069–3074PubMedCrossRefGoogle Scholar
  27. 27.
    Ramanathan RK, Belani CP, Singh DA, Tanaka M, Lenz HJ, Yen Y, Kindler HL, Iqbal S, Longmate J, Mack PC, Lurje G, Gandour-Edwards R, Dancey J, Gandara DR (2009) A phase II study of lapatinib in patients with advanced biliary tree and hepatocellular cancer. Cancer Chemother Pharmacol 64:777–783PubMedCrossRefGoogle Scholar
  28. 28.
    Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T, Zhao F, Vincent PW, Naumov GN, Bradner JE, Althaus IW, Gandhi L, Shapiro GI, Nelson JM, Heymach JV, Meyerson M, Wong KK, Janne PA (2007) PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 67:11924–11932PubMedCrossRefGoogle Scholar
  29. 29.
    Gonzales AJ, Hook KE, Althaus IW, Ellis PA, Trachet E, Delaney AM, Harvey PJ, Ellis TA, Amato DM, Nelson JM, Fry DW, Zhu T, Loi CM, Fakhoury SA, Schlosser KM, Sexton KE, Winters RT, Reed JE, Bridges AJ, Lettiere DJ, Baker DA, Yang J, Lee HT, Tecle H, Vincent PW (2008) Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol Cancer Ther 7:1880–1889PubMedCrossRefGoogle Scholar
  30. 30.
    Ercan D, Zejnullahu K, Yonesaka K, Xiao Y, Capelletti M, Rogers A, Lifshits E, Brown A, Lee C, Christensen JG, Kwiatkowski DJ, Engelman JA, Janne PA (2010) Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene 29:2346–2356PubMedCrossRefGoogle Scholar
  31. 31.
    Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L, Lindeman NI, Murphy C, Akhavanfard S, Yeap BY, Xiao Y, Capelletti M, Iafrate AJ, Lee C, Christensen JG, Engelman JA, Janne PA (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17:77–88PubMedCrossRefGoogle Scholar
  32. 32.
    Ku JL, Park JG (2005) Biology of SNU cell lines. Cancer Res Treat 37:1–19PubMedCrossRefGoogle Scholar
  33. 33.
    Ku JL, Yoon KA, Kim IJ, Kim WH, Jang JY, Suh KS, Kim SW, Park YH, Hwang JH, Yoon YB, Park JG (2002) Establishment and characterisation of six human biliary tract cancer cell lines. Br J Cancer 87:187–193PubMedCrossRefGoogle Scholar
  34. 34.
    Nam HJ, Kim HP, Yoon YK, Hur HS, Song SH, Kim MS, Lee GS, Han SW, Im SA, Kim TY, Oh DY, Bang YJ (2011) Antitumor activity of HM781-36B, an irreversible Pan-HER inhibitor, alone or in combination with cytotoxic chemotherapeutic agents in gastric cancer. Cancer Lett 302:155–165PubMedCrossRefGoogle Scholar
  35. 35.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  36. 36.
    Erlichman C, Boerner SA, Hallgren CG, Spieker R, Wang XY, James CD, Scheffer GL, Maliepaard M, Ross DD, Bible KC, Kaufmann SH (2001) The HER tyrosine kinase inhibitor CI1033 enhances cytotoxicity of 7-ethyl-10-hydroxycamptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. Cancer Res 61:739–748PubMedGoogle Scholar
  37. 37.
    Han SW, Kim TY, Hwang PG, Jeong S, Kim J, Choi IS, Oh DY, Kim JH, Kim DW, Chung DH, Im SA, Kim YT, Lee JS, Heo DS, Bang YJ, Kim NK (2005) Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 23:2493–2501PubMedCrossRefGoogle Scholar
  38. 38.
    Lee KW, Kim JH, Park JH, Kim HP, Song SH, Kim SG, Kim TY, Jong HS, Jung KH, Im SA, Kim NK, Bang YJ (2006) Antitumor activity of SK-7041, a novel histone deacetylase inhibitor, in human lung and breast cancer cells. Anticancer Res 26:3429–3438PubMedGoogle Scholar
  39. 39.
    Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73PubMedCrossRefGoogle Scholar
  40. 40.
    Yoon YK, Kim HP, Han SW, Hur HS, Test YOh (2009) article sample title placed here. Mol Cancer Ther 8:2526–2536PubMedCrossRefGoogle Scholar
  41. 41.
    Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, Seeger JM, Weiss J, Fischer F, Frommolt P, Michel K, Peifer M, Mermel C, Girard L, Peyton M, Gazdar AF, Minna JD, Garraway LA, Kashkar H, Pao W, Meyerson M, Thomas RK (2009) PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res 69:3256–3261PubMedCrossRefGoogle Scholar
  42. 42.
    Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE (2005) KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2:e17PubMedCrossRefGoogle Scholar
  43. 43.
    Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22PubMedCrossRefGoogle Scholar
  44. 44.
    Kadota M, Sato M, Duncan B, Ooshima A, Yang HH, Diaz-Meyer N, Gere S, Kageyama S, Fukuoka J, Nagata T, Tsukada K, Dunn BK, Wakefield LM, Lee MP (2009) Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res 69:7357–7365PubMedCrossRefGoogle Scholar
  45. 45.
    Yoon YK, Kim HP, Han SW, Test YOh (2010) article sample title placed here. Mol Carcinog 49:353–362PubMedCrossRefGoogle Scholar
  46. 46.
    Nabeya Y, Suzuki T, Furuya A, Koide N, Ohkoshi M, Takiguchi M, Ochiai T, Matsubara H, Hiwasa T (2011) Calpain regulates thymidylate synthase-5-fluoro-dUMP complex levels associated with response to 5-fluorouracil in gastric cancer cells. Cancer Sci 102:1509–1515PubMedCrossRefGoogle Scholar
  47. 47.
    Komori S, Osada S, Mori R, Matsui S, Sanada Y, Tomita H, Tokuyama Y, Takahashi T, Yamaguchi K, Yoshida K (2010) Contribution of thymidylate synthase to gemcitabine therapy for advanced pancreatic cancer. Pancreas 39:1284–1292PubMedCrossRefGoogle Scholar
  48. 48.
    Shi Y, Chen L, Li J, Lu YL, Jiao SC (2010) Expression and predictive role of excision repair cross complementation group 1, ribonucleotide reductase subunit M1, and beta-tubulin3 in postoperative patients with non-small cell lung cancer receiving adjuvant chemotherapy. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 32:375–382PubMedGoogle Scholar
  49. 49.
    Ferrandina G, Mey V, Nannizzi S, Ricciardi S, Petrillo M, Ferlini C, Danesi R, Scambia G, Del Tacca M (2010) Expression of nucleoside transporters, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemother Pharmacol 65:679–686PubMedCrossRefGoogle Scholar
  50. 50.
    Fujita H, Ohuchida K, Mizumoto K, Itaba S, Ito T, Nakata K, Yu J, Kayashima T, Souzaki R, Tajiri T, Manabe T, Ohtsuka T, Tanaka M (2010) Gene expression levels as predictive markers of outcome in pancreatic cancer after gemcitabine-based adjuvant chemotherapy. Neoplasia 12:807–817PubMedGoogle Scholar
  51. 51.
    Ohhashi S, Ohuchida K, Mizumoto K, Fujita H, Egami T, Yu J, Toma H, Sadatomi S, Nagai E, Tanaka M (2008) Down-regulation of deoxycytidine kinase enhances acquired resistance to gemcitabine in pancreatic cancer. Anticancer Res 28:2205–2212PubMedGoogle Scholar
  52. 52.
    Ojima H, Yoshikawa D, Ino Y, Shimizu H, Miyamoto M, Kokubu A, Hiraoka N, Morofuji N, Kondo T, Onaya H, Okusaka T, Shimada K, Sakamoto Y, Esaki M, Nara S, Kosuge T, Hirohashi S, Kanai Y, Shibata T (2010) Establishment of six new human biliary tract carcinoma cell lines and identification of MAGEH1 as a candidate biomarker for predicting the efficacy of gemcitabine treatment. Cancer Sci 101:882–888PubMedCrossRefGoogle Scholar
  53. 53.
    Weigt J, Malfertheiner P (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. Expert Rev Gastroenterol Hepatol 4:395–397PubMedCrossRefGoogle Scholar
  54. 54.
    Wiedmann MW, Mossner J (2010) Molecular targeted therapy of biliary tract cancer–results of the first clinical studies. Curr Drug Targets 11:834–850PubMedCrossRefGoogle Scholar
  55. 55.
    Safran H, Miner T, Resnick M, Dipetrillo T, McNulty B, Evans D, Joseph P, Plette A, Millis R, Sears D, Gutman N, Kennedy T (2008) Lapatinib/gemcitabine and lapatinib/gemcitabine/oxaliplatin: a phase I study for advanced pancreaticobiliary cancer. Am J Clin Oncol 31:140–144PubMedCrossRefGoogle Scholar
  56. 56.
    Suda K, Murakami I, Katayama T, Tomizawa K, Osada H, Sekido Y, Maehara Y, Yatabe Y, Mitsudomi T (2010) Reciprocal and complementary role of MET amplification and EGFR T790M mutation in acquired resistance to kinase inhibitors in lung cancer. Clin Cancer Res 16:5489–5498PubMedCrossRefGoogle Scholar
  57. 57.
    Kim JW, Kim HP, Im SA, Kang S, Hur HS, Yoon YK, Oh DY, Kim JH, Lee DS, Kim TY, Bang YJ (2008) The growth inhibitory effect of lapatinib, a dual inhibitor of EGFR and HER2 tyrosine kinase, in gastric cancer cell lines. Cancer LettGoogle Scholar
  58. 58.
    Kim HP, Yoon YK, Kim JW, Han SW, Hur HS, Park J, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY (2009) Lapatinib, a dual EGFR and HER2 tyrosine kinase inhibitor, downregulates thymidylate synthase by inhibiting the nuclear translocation of EGFR and HER2. PLoS One 4:e5933PubMedCrossRefGoogle Scholar
  59. 59.
    Li XD, Geng YT, Wu CP, Shen H, Sun J, Shu YQ, Yin YM (2010) Restoration of gefitinib efficacy following chemotherapy in a patient with metastatic non-small cell lung cancer. Onkologie 33:466–469PubMedCrossRefGoogle Scholar
  60. 60.
    Pietras RJ, Poen JC, Gallardo D, Wongvipat PN, Lee HJ, Slamon DJ (1999) Monoclonal antibody to HER-2/neureceptor modulates repair of radiation-induced DNA damage and enhances radiosensitivity of human breast cancer cells overexpressing this oncogene. Cancer Res 59:1347–1355PubMedGoogle Scholar
  61. 61.
    Osawa K (2009) Gene polymorphisms and chemotherapy in non-small cell lung cancer. Zhongguo Fei Ai Za Zhi 12:837–840PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hyun-Jin Nam
    • 1
  • Hwang-Phill Kim
    • 1
  • Young-Kwang Yoon
    • 1
  • Sang-Hyun Song
    • 1
  • Ah-Rum Min
    • 1
  • Sae-Won Han
    • 1
    • 2
  • Seock-Ah Im
    • 1
    • 2
  • Tae-You Kim
    • 1
    • 2
  • Do-Youn Oh
    • 1
    • 2
    Email author
  • Yung-Jue Bang
    • 1
    • 2
  1. 1.Cancer Research InstituteSeoul National University College of MedicineSeoulSouth Korea
  2. 2.Department of Internal Medicine, Seoul National University HospitalSeoul National University College of MedicineSeoulRepublic of Korea

Personalised recommendations