Investigational New Drugs

, Volume 30, Issue 6, pp 2113–2120 | Cite as

MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation

  • Li Wang
  • Kathy A. Mason
  • K. Kian Ang
  • Thomas Buchholz
  • David Valdecanas
  • Anjili Mathur
  • Carolyn Buser-Doepner
  • Carlo Toniatti
  • Luka Milas


The poly-(ADP-ribose) polymerase (PARP) inhibitor, MK-4827, is a novel potent, orally bioavailable PARP-1 and PARP-2 inhibitor currently in phase I clinical trials for cancer treatment. No preclinical data currently exist on the combination of MK-4827 with radiotherapy. The current study examined combined treatment efficacy of MK-4827 and fractionated radiotherapy using a variety of human tumor xenografts of differing p53 status: Calu-6 (p53 null), A549 (p53 wild-type [wt]) and H-460 (p53 wt) lung cancers and triple negative MDA-MB-231 human breast carcinoma. To mimic clinical application of radiotherapy, fractionated radiation (2 Gy per fraction) schedules given once or twice daily for 1 to 2 weeks combined with MK-4827, 50 mg/kg once daily or 25 mg/kg twice daily, were used. MK-4827 was found to be highly and similarly effective in both radiation schedules but maximum radiation enhancement was observed when MK-4827 was given at a dose of 50 mg/kg once daily (EF = 2.2). MK-4827 radiosensitized all four tumors studied regardless of their p53 status. MK-4827 reduced PAR levels in tumors by 1 h after administration which persisted for up to 24 h. This long period of PARP inhibition potentially adds to the flexibility of design of future clinical trials. Thus, MK-4827 shows high potential to improve the efficacy of radiotherapy.


Poly-(ADP-ribose) inhibitor MK-4827 Radiation Lung and breast tumor xenografts 



This study was sponsored by a Laboratory Study Agreement with Merck Sharp & Dohme Corp.

Conflict of Interest

Authors Anjili Mathur, Carolyn Buser-Doepner and Carlo Toniatti are current or former employees of Merck Sharp & Dohme Corp.

All other authors declare that they have no conflict of interest.


  1. 1.
    Chambon P, Weill JD, Mandel P (1963) Nicotinamide mononucleotide activation of a new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. Biochem Biophys Res Commun 11:39–43PubMedCrossRefGoogle Scholar
  2. 2.
    Jagtap P, Szabo C (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440PubMedCrossRefGoogle Scholar
  3. 3.
    Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528PubMedCrossRefGoogle Scholar
  4. 4.
    Chalmers A, Johnston P, Woodcock M, Joiner M, Marples B (2004) PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int J Radiat Oncol Biol Phys 58:410–419PubMedCrossRefGoogle Scholar
  5. 5.
    Plummer ER (2006) Inhibition of poly(ADP-ribose) polymerase in cancer. Curr Opin Pharmacol 6:364–368PubMedCrossRefGoogle Scholar
  6. 6.
    Satoh MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–358PubMedCrossRefGoogle Scholar
  7. 7.
    Gerö D, Szabó C (2008) Poly(ADP-ribose) polymerase: a new therapeutic target? Curr Opin Anaesthesiol 21:111–121PubMedCrossRefGoogle Scholar
  8. 8.
    Durkacz BW, Omidiji O, Gray DA, Shall S (1980) (ADP-ribose)n participates in DNA excision repair. Nature 283(5747):593–596PubMedCrossRefGoogle Scholar
  9. 9.
    Shieh WM, Ame JC, Wilson MV, Wang ZQ, Koh DW, Jacobson MK, Jacobson EL (1998) Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J Biol Chem 273:30069–30072PubMedCrossRefGoogle Scholar
  10. 10.
    Clark JB, Ferris GM, Pinder S (1971) Inhibition of nuclear NAD nucleosidase and poly ADP-ribose polymerase activity from rat liver by nicotinamide and 5′-methyl nicotinamide. Biochim Biophys Acta 238:82–85PubMedCrossRefGoogle Scholar
  11. 11.
    Underhill C, Toulmonde M, Bonnefoi H (2010) A review of PARP inhibitors: from bench to bedside. Ann Oncol 22(2):268–279PubMedCrossRefGoogle Scholar
  12. 12.
    Curtin NJ (2005) PARP inhibitors for cancer therapy. Expert Rev Mol Med 7(4):1–20PubMedCrossRefGoogle Scholar
  13. 13.
    Zaremba T, Curtin NJ (2007) PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med Chem 7:515–523PubMedGoogle Scholar
  14. 14.
    Comen EA, Robson M (2010) Inhibition of poly(ADP)-ribose polymerase as a therapeutic strategy for breast cancer. Oncology (Williston Park) 24(1):55–62Google Scholar
  15. 15.
    Brock WA, Milas L, Bergh S, Lo R, Szabo C, Mason KA (2004) Radiosensitization of human and rodent cell lines by INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase. Cancer Lett 205(2):155–160PubMedCrossRefGoogle Scholar
  16. 16.
    Mason KA, Valdecanas D, Hunter NR, Milas L (2008) INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase, enhances tumor response to doxorubicin. Invest New Drugs 26(1):1–5PubMedCrossRefGoogle Scholar
  17. 17.
    Telli ML, Ford JM (2010) PARP Inhibitors in Breast Cancer. Clin Adv Hematol Oncol 8(9):629–635PubMedGoogle Scholar
  18. 18.
    Peralta-Leal A, Rodríguez-Vargas JM, Aguilar-Quesada R, Rodríguez MI, Linares JL, de Almodóvar MR, Oliver FJ (2009) PARP inhibitors: New partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med 47(1):13–26PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis C, Low JA (2007) Clinical poly(ADP-ribose) polymerase inhibitors for the treatment of cancer. Curr Opin Investig Drugs 8(12):1051–1056PubMedGoogle Scholar
  20. 20.
    Southan GJ, Szabó C (2003) Inhibitors of poly(ADP-ribose) polymerase. Curr Med Chem 10(4):321–340PubMedGoogle Scholar
  21. 21.
    Noël G, Godon C, Fernet M, Giocanti N, Mégnin-Chanet F, Favaudon V (2006) Radiosensitization by the poly(ADP-ribose) polymerase inhibitor 4-amino-1,8-naphthalimide is specific of the S phase of the cell cycle and involves arrest of DNA synthesis. Mol Cancer Ther 5(3):564–574PubMedCrossRefGoogle Scholar
  22. 22.
    Donawho CK, Luo Y, Luo Y, Penning TD et al (2007) ABT-888, an orallyactive poly(ADP-Ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13(9):2728–2737PubMedCrossRefGoogle Scholar
  23. 23.
    Calabrese CR, Almassy R, Barton S et al (2004) Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J Natl Cancer Inst 96(1):56–67PubMedCrossRefGoogle Scholar
  24. 24.
    Dungey FA, Caldecott KW, Chalmers AJ (2009) Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90. Mol Cancer Ther 8(8):2243–2254PubMedCrossRefGoogle Scholar
  25. 25.
    Khan K, Araki K, Wang D et al (2010) Head and neck cancer radiosensitization by the novel poly (ADP-ribose) polymerase inhibitor GPI-15427. Head Neck 32(3):381–391PubMedGoogle Scholar
  26. 26.
    Russo AL, Kwon HC, Burgan WE et al (2009) In vitro and in vivo radiosensitization of glioblastoma cells by the poly (ADP-Ribose) polymerase inhibitor E7016. Clin Cancer Res 15(2):607–612PubMedCrossRefGoogle Scholar
  27. 27.
    Albert JM, Cao C, Kim KW et al (2007) Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin Cancer Res 13(10):3033–3042PubMedCrossRefGoogle Scholar
  28. 28.
    Efimova EV, Mauceri HJ, Golden DW et al (2010) Poly(ADP-Ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors. Cancer Res 70(15):6277–6282PubMedCrossRefGoogle Scholar
  29. 29.
    Thomas HD, Calabrese CR, Batey MA et al (2007) Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther 6(3):945–956PubMedCrossRefGoogle Scholar
  30. 30.
    Dungey FA, Löser DA, Chalmers AJ (2008) Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys 72(4):1188–1197PubMedCrossRefGoogle Scholar
  31. 31.
    Jones P, Altamura S, Boueres J et al (2009) Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and −2 mutant tumors. J Med Chem 52(22):7170–7185PubMedCrossRefGoogle Scholar
  32. 32.
    Penning TD (2010) Small-molecule PARP modulators – current status and future therapeutic potential. Curr Opin Drug Discov Devel 13(5):577–578PubMedGoogle Scholar
  33. 33.
    Sandhu S, Wenham R, Wilding G, McFadden M, Sun L, Toniatti C, Stroh M, Carpenter C, De Bono J, Schelman W (2010) First-in-human trial of a poly(ADP-ribose) polymerase (PARP) inhibitor MK-4827 in advanced cancer patients (pts) with antitumor activity in BRCA-deficient and sporadic ovarian cancers. ASCO Annual Meeting, Chicago, IL, USA (2010):Abs 3001Google Scholar
  34. 34.
    Ménissier de Murcia J, Ricoul M, Tartier L et al (2003) Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J 22:2255–2263PubMedCrossRefGoogle Scholar
  35. 35.
    Powell C, Mikropoulos C, Kaye SB, Nutting CM, Bhide SA, Newbold K, Harrington KJ (2010) Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev 36(7):566–575PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Li Wang
    • 1
  • Kathy A. Mason
    • 1
  • K. Kian Ang
    • 2
  • Thomas Buchholz
    • 2
  • David Valdecanas
    • 1
  • Anjili Mathur
    • 3
  • Carolyn Buser-Doepner
    • 3
  • Carlo Toniatti
    • 3
  • Luka Milas
    • 1
  1. 1.Department of Experimental Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Oncology, Merck Research LabsBostonUSA

Personalised recommendations