Investigational New Drugs

, Volume 30, Issue 4, pp 1646–1651 | Cite as

SWOG 0514: a phase II study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma

  • Anthony B. El-Khoueiry
  • Cathryn J. Rankin
  • Edgar Ben-Josef
  • Heinz-Josef Lenz
  • Philip J. Gold
  • R. Darryl Hamilton
  • Rangaswamy Govindarajan
  • Cathy Eng
  • Charles D. Blanke


Objectives Gallbladder and cholangiocarcinomas represent a heterogeneous group of malignant diseases that commonly present at an advanced stage and have limited therapeutic options. Based on the role of the Ras-Raf-Mek-Erk pathway and the VEGF axis in biliary carcinomas, we conducted a phase II study of sorafenib in patients with advanced biliary cancers. Methods Eligible patients had no prior therapy for metastatic or unresectable disease. Sorafenib was administered at 400 mg po twice daily continuously. Results The study was terminated after the first stage of accrual due to failure to meet the primary objective. A confirmed response rate of 0% (0%–11%) was observed. Thirty-nine percent of patients demonstrated stable disease (including 2 with unconfirmed PR). PFS was 3 months (95% CI: 2–4 months) and OS 9 months (95% CI: 4–12 months). The most common grade 3 and 4 toxicities included hand-foot skin reaction (13%), bilirubin elevation (13%), venous thromboembolism (10%), AST/ALT elevation (10%) and elevated alkaline phosphatase (10%). Conclusion While treatment with sorafenib did not result in objective responses, patients with biliary cancers receiving this drug had some therapeutic benefit. Additional studies with sorafenib in combination with chemotherapy or other targeted agents may be warranted.


Sorafenib Gallbladder cancer Cholangiocarcinoma Biliary cancer 


  1. 1.
    Cardinale V et al (2010) Intra-hepatic and extra-hepatic cholangiocarcinoma: new insight into epidemiology and risk factors. World J Gastrointest Oncol 2(11):407–16CrossRefPubMedGoogle Scholar
  2. 2.
    McGlynn KA, Tarone RE, El-Serag HB (2006) A comparison of trends in the incidence of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in the United States. Cancer Epidemiol Biomarkers Prev 15(6):1198–203CrossRefPubMedGoogle Scholar
  3. 3.
    Hezel AF, Zhu AX (2008) Systemic therapy for biliary tract cancers. Oncologist 13(4):415–23CrossRefPubMedGoogle Scholar
  4. 4.
    Choi CW et al (2000) Effects of 5-fluorouracil and leucovorin in the treatment of pancreatic-biliary tract adenocarcinomas. Am J Clin Oncol 23(4):425–8PubMedGoogle Scholar
  5. 5.
    Ducreux M et al (2005) A randomised phase II trial of weekly high-dose 5-fluorouracil with and without folinic acid and cisplatin in patients with advanced biliary tract carcinoma: results of the 40955 EORTC trial. Eur J Cancer 41(3):398–403CrossRefPubMedGoogle Scholar
  6. 6.
    Eckel F, Schmid RM (2007) Chemotherapy in advanced biliary tract carcinoma: a pooled analysis of clinical trials. Br J Cancer 96(6):896–902CrossRefPubMedGoogle Scholar
  7. 7.
    Valle J et al (2010) Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362(14):1273–81CrossRefPubMedGoogle Scholar
  8. 8.
    Tannapfel A et al (2003) Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut 52(5):706–12CrossRefPubMedGoogle Scholar
  9. 9.
    Yoon JH et al (2002) Bile acids inhibit Mcl-1 protein turnover via an epidermal growth factor receptor/Raf-1-dependent mechanism. Cancer Res 62(22):6500–5PubMedGoogle Scholar
  10. 10.
    Benckert C et al (2003) Transforming growth factor beta 1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells. Cancer Res 63(5):1083–92PubMedGoogle Scholar
  11. 11.
    Yoshikawa D et al (2008) Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer 98(2):418–25CrossRefPubMedGoogle Scholar
  12. 12.
    Wilhelm SM et al (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64(19):7099–109CrossRefPubMedGoogle Scholar
  13. 13.
    Green SJ, Dahlberg S (1992) Planned versus attained design in phase II clinical trials. Stat Med 11(7):853–62CrossRefPubMedGoogle Scholar
  14. 14.
    Blechacz BR et al (2009) Sorafenib inhibits signal transducer and activator of transcription-3 signaling in cholangiocarcinoma cells by activating the phosphatase shatterproof 2. Hepatology 50(6):1861–70CrossRefPubMedGoogle Scholar
  15. 15.
    Sugiyama H et al (2011) Potent in vitro and in vivo antitumor activity of sorafenib against human intrahepatic cholangiocarcinoma cells. J GastroenterolGoogle Scholar
  16. 16.
    Llovet JM et al (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359(4):378–90CrossRefPubMedGoogle Scholar
  17. 17.
    Iqbal S, Blanke C, Lenz HJ (2006) SWOG S0202: A phase II trial of gemcitabine and capecitabine in patients (pts) with unresectable or metastatic gallbladder cancer or cholangiocarcinoma. Abstract # 4131. in Proceedings of the American Society of Clinical OncologyGoogle Scholar
  18. 18.
    Bengala C et al (2010) Sorafenib in patients with advanced biliary tract carcinoma: a phase II trial. Br J Cancer 102(1):68–72CrossRefPubMedGoogle Scholar
  19. 19.
    Yonemoto N et al (2007) A multi-center retrospective analysis of survival benefits of chemotherapy for unresectable biliary tract cancer. Jpn J Clin Oncol 37(11):843–51CrossRefPubMedGoogle Scholar
  20. 20.
    Nehls O et al (2008) Capecitabine plus oxaliplatin as first-line treatment in patients with advanced biliary system adenocarcinoma: a prospective multicentre phase II trial. Br J Cancer 98(2):309–15CrossRefPubMedGoogle Scholar
  21. 21.
    Harder J et al (2006) Outpatient chemotherapy with gemcitabine and oxaliplatin in patients with biliary tract cancer. Br J Cancer 95(7):848–52CrossRefPubMedGoogle Scholar
  22. 22.
    Jarnagin WR et al (2006) Differential cell cycle-regulatory protein expression in biliary tract adenocarcinoma: correlation with anatomic site, pathologic variables, and clinical outcome. J Clin Oncol 24(7):1152–60CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anthony B. El-Khoueiry
    • 1
  • Cathryn J. Rankin
    • 2
  • Edgar Ben-Josef
    • 3
  • Heinz-Josef Lenz
    • 1
  • Philip J. Gold
    • 4
  • R. Darryl Hamilton
    • 5
  • Rangaswamy Govindarajan
    • 6
  • Cathy Eng
    • 7
  • Charles D. Blanke
    • 8
  1. 1.University of Southern California/Norris Comprehensive Cancer CenterLos AngelesUSA
  2. 2.SWOG Statistical CenterSeattleUSA
  3. 3.University of MichiganAnn ArborUSA
  4. 4.Puget Sound Oncology Consortium/Swedish Cancer InstituteSeattleUSA
  5. 5.University of Mississippi Medical CenterJacksonUSA
  6. 6.University of Arkansas/Winthrop Rockefeller Cancer InstituteLittle RockUSA
  7. 7.University of Texas/MD Anderson Cancer CenterHoustonUSA
  8. 8.University of British Columbia, and BC Cancer AgencyVancouverCanada

Personalised recommendations