Investigational New Drugs

, Volume 30, Issue 4, pp 1331–1342 | Cite as

Screening of well-established drugs targeting cancer metabolism: reproducibility of the efficacy of a highly effective drug combination in mice.

  • Mohammad Abolhassani
  • Adeline Guais
  • Edward Sanders
  • Frédéric Campion
  • Iduna Fichtner
  • Jacques Bonte
  • Gianfranco Baronzio
  • Giammaria Fiorentini
  • Maurice Israël
  • Laurent SchwartzEmail author


Alterations in metabolic pathways are known to characterize cancer. In order to suppress cancer growth, however, multiple proteins involved in these pathways have to be targeted simultaneously. We have developed a screening method to assess the best drug combination for cancer treatment based on targeting several factors implicated in tumor specific metabolism. Following a review of the literature, we identified those enzymes known to be deregulated in cancer and established a list of sixty-two drugs targeting them. These molecules are used routinely in clinical settings for diseases other than cancer. We screened a first library in vitro against four cell lines and then evaluated the most promising binary combinations in vivo against three murine syngeneic cancer models, (LL/2, Lewis lung carcinoma; B16-F10, melanoma; and MBT-2, bladder cancer). The optimum result was obtained using a combination of α-lipoic acid and hydroxycitrate (METABLOCTM). In this study, a third agent was added by in vivo evaluation of a large number of combinations. The addition of octreotide strongly reduced tumor development (T/C% value of 30.2 to 34.5%; P < 0.001) in the same models and prolonged animal survival (P < 0.001) as compared to cisplatin. These results were confirmed in a different laboratory setting using a human xenograft model (NCI-H69, small cell lung cancer). None of these three molecules are known to target DNA. The effectiveness of this combination in several animal models, as well as the low toxicity of these inexpensive drugs, emphasizes the necessity of rapidly setting up a clinical trial.


Lipoic acid Hydroxycitrate Octreotide Metabolic enzymes Screening 



We acknowledge the help of Jean-Marc Steyaert. The mice studies were performed by Nosco Pharmaceuticals (France) and EPO GmbH (Germany). This work was funded by Biorébus. METABLOC is a trade mark of Biorébus. AG is an employee of Biorébus. The other authors declare that they have no competing interests.

Supplementary material

10637_2011_9692_MOESM1_ESM.doc (62 kb)
Esm 1 Describing detailed statistical results for each experiment. (DOC 61 kb)


  1. 1.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–14CrossRefPubMedGoogle Scholar
  2. 2.
    Robey RB, Hay N (2009) Is Akt the “Warburg kinase”? Akt-energy metabolism interactions and oncogenesis. Sem Cancer Biol 10:25–31. doi: 10.1016/j.semcancer.2008.11.010 CrossRefGoogle Scholar
  3. 3.
    Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–418. doi: 10.1111/j.1742-4658.2007.05686.x CrossRefPubMedGoogle Scholar
  4. 4.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–33. doi: 10.1126/science.1160809 CrossRefPubMedGoogle Scholar
  5. 5.
    Feron O (2009) Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother Oncol 92:329–33. doi: 10.1016/j.radonc.2009.06.025 CrossRefPubMedGoogle Scholar
  6. 6.
    Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13:472–82. doi: 10.1016/j.ccr.2008.05.005 CrossRefPubMedGoogle Scholar
  7. 7.
    Altenberg B, Greulich KO (2004) Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 84:1014–20. doi: 10.1016/j.ygeno.2004.08.010 CrossRefPubMedGoogle Scholar
  8. 8.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–9. doi: 10.1038/nrc1478 CrossRefPubMedGoogle Scholar
  9. 9.
    Bui T, Thompson B (2006) Cancer’s sweet tooth. Cancer Cell 9:419–20. doi: 10.1016/j.ccr.2006.05.012 CrossRefPubMedGoogle Scholar
  10. 10.
    Gatenby RA, Gawlinski ET, Gmitro AF, Kaylor B, Gillies RJ (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66:5216–23. doi: 10.1158/0008-5472.CAN-05-4193 CrossRefPubMedGoogle Scholar
  11. 11.
    Yeung SJ, Pan J, Lee MH (2008) Roles of p53, Myc and HIF-1 in regulating glycolysis—the seventh hallmark of cancer. Cell Mol Life Sci 65:3981–99CrossRefPubMedGoogle Scholar
  12. 12.
    Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25:4633–46. doi: 10.1038/sj.onc.1209597 CrossRefPubMedGoogle Scholar
  13. 13.
    Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, Abdulkarim B, McMurtry MS, et al. (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34. doi:  10.1126/scitranslmed.3000677
  14. 14.
    Berkson BM, Rubin DM, Berkson AJ (2006) The long-term survival of a patient with pancreatic cancer with metastases to the liver after treatment with the intravenous alpha-lipoic acid/low-dose naltrexone protocol. Integr Cancer Ther 5:83–9. doi: 10.1177/1534735405285901 CrossRefPubMedGoogle Scholar
  15. 15.
    Berkson BM, Rubin DM, Rubin AJ (2009) Revisiting the ALA/N (alpha-lipoic acid/low dose naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: a report of 3 new cases. Integr Cancer Ther 8:416–22. doi: 10.1177/1534735409352082 CrossRefPubMedGoogle Scholar
  16. 16.
    Israël M, Schwartz L (2005) Cancer as a Dysmethylation Syndrome. John Libbey, ParisGoogle Scholar
  17. 17.
    Israël M, Schwartz L (2011) Carcinogenic mechanisms: anticancer drugs that target tumor metabolism. Biomedical Research 22(2):130–164Google Scholar
  18. 18.
    Schwartz L, Abolhassani M, Guais A, Sanders E, Steyaert JM, Campion F, Israël M (2010) A combination of alpha lipoic acid and calcium hydroxycitrate is efficient against mouse cancer models: preliminary results. Oncol Rep 23:1407–16. doi: 10.3892/or_00000778 CrossRefPubMedGoogle Scholar
  19. 19.
    Korotchkina LG, Sidhu S, Patel MS (2004) R-Lipoic acid inhibits mammalian pyruvate dehydrogenase kinase. Free Radic Res 38:1083–92. doi: 10.1080/10715760400004168 CrossRefPubMedGoogle Scholar
  20. 20.
    Hatzivassiliou G, Zhao F, Bauer D, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–1. doi: 10.1016/j.ccr.2005.09.008 CrossRefPubMedGoogle Scholar
  21. 21.
    Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2005) Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers, Pharmacology and Toxicology, July 2005.Google Scholar
  22. 22.
    Guais A, Baronzio GF, Sanders E, Campion F, Mainini C, Fiorentini G, Montagnani F, Behzadi M, Schwartz L, Abolhassani M (2010) Adding a combination of hydroxycitrate and lipoic acid (METABLOC™) to chemotherapy improves effectiveness against tumor development: experimental results and case report. Investig New Drugs In press 2010 Oct 8. [Epub ahead of print]. doi:  10.1007/s10637-010-9552-x
  23. 23.
    Tomayko MM, Reynolds CP (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 24:148–54CrossRefPubMedGoogle Scholar
  24. 24.
    Msaouel P, Galanis E, Koutsilieris M (2009) Somatostatin and somatostatin receptors: implications for neoplastic growth and cancer biology. Expert Opin Investig Drugs 18:1297–316. doi: 10.1517/13543780903176399 CrossRefPubMedGoogle Scholar
  25. 25.
    Prasad V, Fetscher S, Baum RP (2007) Changing role of somatostatin receptor targeted drugs in NET: nuclear medicine’s view. J Pharm Pharm Sci 10:321s–37sPubMedGoogle Scholar
  26. 26.
    Oberg K (2010) Antitumor effect of octreotide LAR, a somatostatin analog. Nature Rev Endocrinol 6:188–9. doi: 10.1038/nrendo.2010.3 CrossRefGoogle Scholar
  27. 27.
    Friedlander TW Weinberg VK Small EJ Sharib J Harzstark AL Lin AM Fong L Ryan CJ (2010) Effect of the somatostatin analog octreotide acetate on circulating insulin-like growth factor-1 and related peptides in patients with non-metastatic castration-resistant prostate cancer: results of a phase II study. Urol Oncol In Press Sep 28. [Epub ahead of print]. doi: 10.1016/j.urolonc.2010.06.014
  28. 28.
    Grozinsky-Glasberg S, Shimon I, Korbonits M, Grossman AB (2008) Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer 15:701–20. doi: 10.1677/ERC-07-0288 CrossRefPubMedGoogle Scholar
  29. 29.
    Cerovac V, Monteserin-Garcia J, Rubinfeld H, Buchfelder M, Losa M, Florio T, Paez-Pereda M, Stalla GK, Theodroropoulou M (2010) The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells. Cancer Res 70:666–74. doi: 10.1158/0008-5472.CAN-09-2951 CrossRefPubMedGoogle Scholar
  30. 30.
    Sun Q, Chen X, Peng H, Wang F, Zha X, Wang Y, Jing Y, Yang H, Chen L, Zhang Y, Goto J, Onda H, Chen T, Wang MR, Lu Y, You H, Kwiatkowski D, Zhang H (2011) Mammalian target of rapamycin up-regulation of pyruvate kinase isoeznzyme type M2 is critical for aerobic glycolysis and tumor growth. PNAS 108:4129–34. doi: 10.1073/pnas.1014769108 CrossRefPubMedGoogle Scholar
  31. 31.
    Christofk HR, Vander Heiden MG, Harris MH, Rmanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–3. doi: 10.1038/nature06734 CrossRefPubMedGoogle Scholar
  32. 32.
    Pouessel D, Culine S, Guillot A, Di Stabile L, Thibaudeau E, Reymond D, Mottet N (2008) Phase II study of TLN-232, a novel M2PK targeting agent administered by CIV to patients with advanced renal cell carcinoma. 33 rd ESMO Congress 12–16 SeptemberGoogle Scholar
  33. 33.
    Steták A, Veress R, Ovádi J, Csermely P, Kéri G, Ullrich A (2007) Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death. Cancer Res 67:1602–8. doi: 10.1158/0008-5472.CAN-06-2870 CrossRefPubMedGoogle Scholar
  34. 34.
    Szokolóczi O, Schwab R, Peták I, Orfi L, Pap A, Eberle AN, Szüts T, Kéril G (2005) TT232, a novel signal transduction inhibitory compound in the therapy of cancer and inflammatory diseases. J Recept Signal Transduct Res 25(4–6):217–35PubMedGoogle Scholar
  35. 35.
    Oddstig J, Bernhardt P, Nilsson O, Ahlman H, Forssell-Aronsson E (2006) Radiation-induced up-regulation of somatostatin receptor expression in small cell lung cancer in vitro. Nucl Med Biol 33:841–6. doi: 10.1016/j.nucmedbio.2006.07.010 CrossRefPubMedGoogle Scholar
  36. 36.
    Nayak TK, Atcher RW, Prossnitz ER, Norenberg JP (2008) Enhancement of somatostatin-receptor-targeted (177)Lu-[DOTA(0)-Tyr[3]]-octreotide therapy by gemcitabine pretreatment-mediated receptor uptake, up-regulation and cell cycle modulation. Nucl Med Biol 35:673–8. doi: 10.1016/j.nucmedbio.2008.05.003 CrossRefPubMedGoogle Scholar
  37. 37.
    Florio T (2008) Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors. Front Biosci 13:822–40CrossRefPubMedGoogle Scholar
  38. 38.
    Raderer M, Kurtaran A, Scheithauer W, Fiebiger W, Weinlaender G, Oberhuber G (2001) Different response to the long-acting somatostatin analogues lanreotide and octreotide in a patient with a malignant carcinoid. Oncology 60:141–5CrossRefPubMedGoogle Scholar
  39. 39.
    Rohaizak M, Farndon JR (2002) Use of octreotide and lanreotide in the treatment of symptomatic non-resectable carcinoid tumors. ANZ J Surg 72:635–8. doi: 10.1046/j.1445-2197.2002.02507.x CrossRefPubMedGoogle Scholar
  40. 40.
    Hillman N, Herranz L, Alvarez C, Martínez Olmos MA, Márco A, Gómez-Pan A (1998) Efficacy of octreotide in the regression of a metastatic carcinoid tumour despite negative imaging with In-111-pentetreotide (Octreoscan). Exp Clin Endocrinol Diabetes 106:226–30. doi: 10.1055/s-0029-1211980 CrossRefPubMedGoogle Scholar
  41. 41.
    Jia WD, Xu GL, Wang W, Wang ZH, Li JS, Ma JL, Ren WH, Ge YS, Yu JH, Liu WB (2009) A somatostatin analogue, octreotide, inhibits the occurrence of second primary tumors and lung metastasis after resection of hepatocellular carcinoma in mice. Tohoku J Exp Med 218:155–60. doi: 10.1620/tjem.218.155 CrossRefPubMedGoogle Scholar
  42. 42.
    Ruessmann HJ (2009) German Society of outpatient diabetes centers AND (Arbeitsgemeinschaft niedergelassener diabetologisch tätiger Arzte e.V.): Switching from pathogenetic treatment with alpha-lipoic acid to gabapentin and other analgesics in painful diabetic neuropathy: a real-world study in outpatients. J Diabetes Complications 23:174–7CrossRefPubMedGoogle Scholar
  43. 43.
    Moungjaroen J, Nimmannit U, Callery PS, Wang L, Azad N, Lipipun V, Chanvorachote P, Rojanasakul Y (2006) Reactive oxygen species mediate caspace activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down regulation. J Pharmacol Exp Therapeut 319:1062–9. doi: 10.1124/jpet.106.110965 CrossRefGoogle Scholar
  44. 44.
    Mantovani G, Macciò A, Madeddu C, Gramignano G, Serpe R, Massa E, Dessì M, Tanca FM, Sanna E, Deiana L, Panzone F, Contu P et al (2008) Randomized phase III clinical trial of five different arms of treatment for patients with cancer cachexia: interim results. Nutrition 24:305–13. doi: 10.1016/j.nut.2007.12.010 CrossRefPubMedGoogle Scholar
  45. 45.
    Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 1790:1149–60. doi: 10.1016/j.bbagen.2009.07.026 CrossRefPubMedGoogle Scholar
  46. 46.
    Kovacs EM, Westerterp-Plantenga MS (2006) Effects of (-)-hydroxycitrate on net fat synthesis as de novo lipogenesis. Physiol Behav 88:371–81. doi: 10.1016/j.physbeh.2006.04.005 CrossRefPubMedGoogle Scholar
  47. 47.
    Ayuk J, Stewart SE, Stewart PM, Sheppard MC (2002) Long-term safety and efficacy of depot long-acting somatostatin analogs for the treatment of acromegaly. J Clin Endocrinol Metab 87:4142–6CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mohammad Abolhassani
    • 1
  • Adeline Guais
    • 1
  • Edward Sanders
    • 1
  • Frédéric Campion
    • 1
  • Iduna Fichtner
    • 2
  • Jacques Bonte
    • 1
  • Gianfranco Baronzio
    • 3
  • Giammaria Fiorentini
    • 4
  • Maurice Israël
    • 1
    • 5
  • Laurent Schwartz
    • 6
    • 7
    Email author
  1. 1.BiorébusParisFrance
  2. 2.Experimental Pharmacology & Oncology (EPO) GmbHBerlin BuchGermany
  3. 3.METABLOC Cancer Center, Centro Medico KinesCastano PrimoItaly
  4. 4.Oncology unitS. Giuseppe hospitalEmpoliItaly
  5. 5.Bures sur YvetteFrance
  6. 6.Laboratoire d’InformatiqueEcole PolytechniquePalaiseauFrance
  7. 7.Service d’Oncologie PédiatriqueAP-HP, Hôpital Raymond PoincaréGarchesFrance

Personalised recommendations