Investigational New Drugs

, Volume 30, Issue 3, pp 1261–1269

Targeting angiogenesis from multiple pathways simultaneously: BIBF 1120, an investigational novel triple angiokinase inhibitor

  • Edgardo S. Santos
  • Jorge E. Gomez
  • Luis E. Raez


Angiogenesis is considered one of the major components of tumor progression and metastasis. Interfering with the formation and stabilization of tumor blood vessels could increase tumor response rates and may translate into improved clinical outcomes in cancer patients. The clinical efficacy demonstrated in phase III trials with bevacizumab, a monoclonal antibody that targets vascular endothelial growth factor ligand, suggests that targeting angiogenesis is a rational approach to cancer management. Agents that target additional proangiogenic intracellular signaling pathways also have the potential to contribute to our anticancer armamentarium. Novel targeted agents that have antiangiogenic properties have been developed in recent years such as sorafenib, sunitinib, vandetanib, and others. Many of them inhibit additional pathways beyond vascular endothelial growth factor signaling. One of these investigational targeted agents is a triple angiokinase inhibitor known as BIBF 1120. This compound targets not only vascular endothelial growth factor receptors, but also fibroblast growth factor receptors, and platelet-derived growth factor receptors. The preliminary clinical efficacy of BIBF 1120 is discussed in the context of the most relevant clinical data in several malignancies including non-small cell lung cancer.


Antiangiogenesis Bevacizumab BIBF 1120 Sorafenib Sunitinib Vandetanib 


  1. 1.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257PubMedCrossRefGoogle Scholar
  2. 2.
    Weidner N (1998) Tumoural vascularity as a prognostic factor in cancer patients: the evidence continues to grow. J Pathol 184:119–122PubMedCrossRefGoogle Scholar
  3. 3.
    Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611PubMedCrossRefGoogle Scholar
  4. 4.
    Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6PubMedCrossRefGoogle Scholar
  5. 5.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989PubMedCrossRefGoogle Scholar
  6. 6.
    Giaccone G (2007) The potential of antiangiogenic therapy in non-small cell lung cancer. Clin Cancer Res 13:1961–1970PubMedCrossRefGoogle Scholar
  7. 7.
    Clement-Duchene C, Wakelee H (2010) Antiangiogenic agents and vascular disrupting agents for the treatment of lung cancer: a review. J Thorac Oncol 5:129–139PubMedCrossRefGoogle Scholar
  8. 8.
    McKeage MJ, Baguley BC (2010) Disrupting established tumor blood vessels: an emerging therapeutic strategy for cancer. Cancer 116:1859–1871PubMedCrossRefGoogle Scholar
  9. 9.
    Jain RK, Booth MF (2003) What brings pericytes to tumor vessels? J Clin Invest 112:1134–1136PubMedGoogle Scholar
  10. 10.
    Cao Y, Cao R, Hedlund EM (2008) Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med 86:785–789PubMedCrossRefGoogle Scholar
  11. 11.
    Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340PubMedGoogle Scholar
  12. 12.
    Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232:139–147PubMedCrossRefGoogle Scholar
  13. 13.
    Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253PubMedCrossRefGoogle Scholar
  14. 14.
    Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178PubMedCrossRefGoogle Scholar
  15. 15.
    Rosen LS (2002) Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control 9:36–44PubMedGoogle Scholar
  16. 16.
    Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295PubMedGoogle Scholar
  17. 17.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309PubMedCrossRefGoogle Scholar
  18. 18.
    Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400PubMedCrossRefGoogle Scholar
  19. 19.
    Avastin® (bevacizumab) [package insert] (2009) Genentech, Inc., South San Francisco, CAGoogle Scholar
  20. 20.
    Herbst RS (2006) Toxicities of antiangiogenic therapy in non-small-cell lung cancer. Clin Lung Cancer 8:S23–S30PubMedCrossRefGoogle Scholar
  21. 21.
    Spigel DR, Hainsworth JD, Yardley DA, Raefsky E, Patton J, Peacock N, Farley C, Burris HA III, Greco FA (2010) Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol 28:43–48PubMedCrossRefGoogle Scholar
  22. 22.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550PubMedCrossRefGoogle Scholar
  23. 23.
    Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF III, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F (2004) Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22:2184–2191PubMedCrossRefGoogle Scholar
  24. 24.
    Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M, Abrão Miziara JE, Balint B, de Marinis F, Keller A, Aren O, Csollak M, Albert I, Barrios CH, Grossi F, Krzakowski M, Cupit L, Cihon F, DiMatteo S, Hanna N (2010) Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol 28:1835–1842PubMedCrossRefGoogle Scholar
  25. 25.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234PubMedCrossRefGoogle Scholar
  26. 26.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N, Manegold C (2010) Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 21:1804–1809PubMedCrossRefGoogle Scholar
  27. 27.
    Miller VA, O’Conner P, Soh C, Kabbinavar F, for the ATLAS Investigators (2009) A randomized, double-blind, placebo-controlled, phase IIIb trial (ATLAS) comparing bevacizumab (B) therapy with or without erlotinib (E) after completion of chemotherapy with B for first-line treatment of locally advanced, recurrent, or metastatic non-small cell lung cancer (NSCLC). J Clin Oncol 27:LBA8002Google Scholar
  28. 28.
    Penson RT, Dizon DS, Cannistra SA, Roche MR, Krasner CN, Berlin ST, Horowitz NS, Disilvestro PA, Matulonis UA, Lee H, King MA, Campos SM (2010) Phase II study of carboplatin, paclitaxel, and bevacizumab with maintenance bevacizumab as first-line chemotherapy for advanced mullerian tumors. J Clin Oncol 28:154–159PubMedCrossRefGoogle Scholar
  29. 29.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740PubMedCrossRefGoogle Scholar
  30. 30.
    Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, Chevreau C, Filipek M, Melichar B, Bajetta E, Gorbunova V, Bay JO, Bodrogi I, Jagiello-Gruszfeld A, Moore N, AVOREN Trial investigators (2007) Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370:2103–2111PubMedCrossRefGoogle Scholar
  31. 31.
    O’Shaughnessy J, Miles D, Gray RJ, Dieras V, Perez EA, Zon R, Corte J, Zhou X, Phan S, Miller K (2010) A meta-analysis of overall survival data from three randomized trials of bevacizumab (BV) and first-line chemotherapy as treatment for patients with metastatic breast cancer (MBC). J Clin Oncol 28(15S):115s, Abstract 1005Google Scholar
  32. 32.
    Miles DW, Chan A, Romieu G, Dirix LY, Cortés J, Pivot X, Tomczak P, Juozaityte E, Harbeck N, Steger GG, The BO17708 Study Group (2010) Final Overall Survival (OS) Results from the Randomised, Double-Blind, Placebo-Controlled, Phase III AVADO Study of Bevacizumab (BV) Plus Docetaxel (D) Compared with Placebo (PL) Plus D for the First-Line Treatment of Locally Recurrent (LR) or Metastatic Breast Cancer (mBC). Presented at: San Antonio Breast Cancer Symposium, San Antonio, TX, USA, December 8–12Google Scholar
  33. 33.
    Genentech press release. Genentech Provides Update on Avastin for Metastatic Breast Cancer Following Reviews in Europe and the United States. Accessed 3 February 2011
  34. 34.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA (2004) BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64:7099–7109PubMedCrossRefGoogle Scholar
  35. 35.
    (2009) NEXAVAR (sorafenib) tablets, oral [package insert]. Bayer Healthcare Pharmaceuticals Inc, Wayne, NJGoogle Scholar
  36. 36.
    Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M, Negrier S, Chevreau C, Desai AA, Rolland F, Demkow T, Hutson TE, Gore M, Anderson S, Hofilena G, Shan M, Pena C, Lathia C, Bukowski RM (2009) Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 27:3312–3318PubMedCrossRefGoogle Scholar
  37. 37.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390PubMedCrossRefGoogle Scholar
  38. 38.
    Scagliotti G, von Pawel J, Reck M et al (2008) Sorafenib plus carboplatin/paclitaxel in chemonaive patients with stage IIIB-IV non-small cell lung cancer (NSCLC): interim analysis (IA) results from the phase III, randomized, double-blind, placebo-controlled, ESCAPE (Evaluation of Sorafenib, Carboplatin, and Paclitaxel Efficacy in NSCLC) trial. J Thorac Oncol 3:S97–S98, Abstract 2750Google Scholar
  39. 39.
    Bayer (2010) Press release. Phase III trial of Nexavar® in first-line advanced non-small cell lung cancer does not meet primary endpoint of overall survival. June 14, 2010. Accessed 27 August 2010
  40. 40.
    Heng DY, Kollmannsberger C (2010) Sunitinib. Recent Results Cancer Res 184:71–82PubMedCrossRefGoogle Scholar
  41. 41.
    (2010) SUTENT® (sunitinib malate) capsules, oral [package insert]. Pfizer Inc, New York, NYGoogle Scholar
  42. 42.
    Socinski MA, Novello S, Brahmer JR, Rosell R, Sanchez JM, Belani CP, Govindan R, Atkins JN, Gillenwater HH, Pallares C, Tye L, Selaru P, Chao RC, Scagliotti GV (2008) Multicenter, phase II trial of sunitinib in previously treated, advanced non-small-cell lung cancer. J Clin Oncol 26:650–656PubMedCrossRefGoogle Scholar
  43. 43.
    Novello S, Scagliotti GV, Rosell R, Socinski MA, Brahmer J, Atkins J, Pallares C, Burgess R, Tye L, Selaru P, Wang E, Chao R, Govindan R (2009) Phase II study of continuous daily sunitinib dosing in patients with previously treated advanced non-small cell lung cancer. Br J Cancer 101:1543–1548PubMedCrossRefGoogle Scholar
  44. 44.
    Mitsudomi T (2010) Advances in target therapy for lung cancer. Jpn J Clin Oncol 40:101–106PubMedCrossRefGoogle Scholar
  45. 45.
    AstraZeneca Oncology (2009) Vandetanib (Zactima™) Media Fact Sheet. Accessed 8 September 2010
  46. 46.
    Wells SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Vasselli J, Read J, Schlumberger M (2010) Vandetanib (VAN) in locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial (ZETA). Presented at the 14th International Thyroid Conference; September 11–16, 2010; Paris, France Abstract OC-021Google Scholar
  47. 47.
    Natale RB, Thongprasert S, Greco FA, Thomas M, Tsai CM, Sunpaweravong P, Ferry D, Langmuir P, Rowbottom JA, Goss GD (2009) Vandetanib versus erlotinib in patients with advanced non-small cell lung cancer (NSCLC) after failure of at least one prior cytotoxic chemotherapy: a randomized, double-blind phase III trial (ZEST). J Clin Oncol 27:409s, Abstract 8009CrossRefGoogle Scholar
  48. 48.
    De Boer R, Arrieta O, Gottfried M et al (2009) Vandetanib plus pemetrexed versus pemetrexed as second-line therapy in patients with advanced non-small cell lung cancer (NSCLC): a randomized, double-blind phase III trial (ZEAL). J Clin Oncol 27:409s, Abstract 8010Google Scholar
  49. 49.
    Herbst RS, Sun Y, Eberhardt WE, Germonpre P, Saijo N, Zhou C, Wang J, Li L, Kabbinavar F, Ichinose Y, Qin S, Zhang L, Biesma B, Heymach JV, Langmuir P, Kennedy SJ, Tada H, Johnson BE (2010) Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol 11:619–626PubMedCrossRefGoogle Scholar
  50. 50.
    Lee J, Hirsh V, Park K, Qin S, Blajman CR, Perng R, Emerson L, Langmuir PB, Manegold C (2010) Vandetanib versus placebo in patients with advanced non-small cell lung cancer (NSCLC) after prior therapy with an EGFR tyrosine kinase inhibitor (TKI): a randomized, double-blind phase III trial (ZEPHYR). J Clin Oncol 28:7525Google Scholar
  51. 51.
    Hilberg F, Roth GJ, Krssak M, Kautschitsch S, Sommergruber W, Tontsch-Grunt U, Garin-Chesa P, Bader G, Zoephel A, Quant J, Heckel A, Rettig WJ (2008) BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Res 68:4774–4782PubMedCrossRefGoogle Scholar
  52. 52.
    Roth GJ, Heckel A, Colbatzky F, Handschuh S, Kley J, Lehmann-Lintz T, Lotz R, Tontsch-Grunt U, Walter R, Hilberg F (2009) Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J Med Chem 52:4466–4480PubMedCrossRefGoogle Scholar
  53. 53.
    Mross K, Stefanic M, Gmehling D, Frost A, Baas F, Unger C, Strecker R, Henning J, Gaschler-Markefski B, Stopfer P, de Rossi L, Kaiser R (2010) Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res 16:311–319PubMedCrossRefGoogle Scholar
  54. 54.
    Okamoto I, Kaneda H, Satoh T, Okamoto W, Miyazaki M, Morinaga R, Ueda S, Terashima M, Tsuya A, Sarashina A, Konishi K, Arao T, Nishio K, Kaiser R, Nakagawa K (2010) Phase I safety, pharmacokinetic, and biomarker study of BIBF 1120, an oral triple tyrosine kinase inhibitor in patients with advanced solid tumors. Mol Cancer Ther [Epub ahead of print]Google Scholar
  55. 55.
    Ellis PM, Kaiser R, Zhao Y, Stopfer P, Gyorffy S, Hanna N (2010) Phase I open-label study of continuous treatment with BIBF 1120, a triple angiokinase inhibitor, and pemetrexed in pretreated non-small cell lung cancer patients. Clin Cancer Res 16:2881–2889PubMedCrossRefGoogle Scholar
  56. 56.
    von Pawel J, Kaiser R, Eschbach C, Love J, Staab A, Freiwald M, Bruno R, Stopfer P (2008) Efficacy, safety and pharmacokinetic (PK) results of a phase II study with the triple angiokinase inhibitor BIBF 1120 in patients suffering from advanced non small cell lung cancer (NSCLC). J Thorac Oncol 3:S61, Abstract 163OGoogle Scholar
  57. 57.
    Kropff M, Kienast J, Bisping G, Berdel WE, Gaschler-Markefski B, Stopfer P, Stefanic M, Munzert G (2009) An open-label dose-escalation study of BIBF 1120 in patients with relapsed or refractory multiple myeloma. Anticancer Res 29:4233–4238PubMedGoogle Scholar
  58. 58.
    Burger RA, Brady MF, Bookman MA, Walker JL, Homesley HD, Fowler J, Monk BJ, Greer BE, Boente M, Liang SX (2010) Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): a Gynecologic Oncology Group study. Oral presentation at: the 46th Annual Meeting of the American Society of Clinical Oncology; June 4–8; Chicago, IL, USAGoogle Scholar
  59. 59.
    Ledermann JA, Rustin GJ, Hackshaw A, Kaye SB, Jayson G, Gabra H, James LE, Bell S, Temple G, on behalf of NCRI Gynaecological Cancer Group (2009) A randomised phase II placebo-controlled trial using maintenance therapy to evaluate the vascular targeting agent BIBF 1120 following treatment of relapsed ovarian cancer. Presented at: the 16th Biennial International Meeting of the European Society of Gynaecological Oncology; October 11–14; Belgrade, SerbiaGoogle Scholar
  60. 60.
    Stopfer P, Droz JP, Fléchon A, Joly F, de Mont-Serrat H, Kaiser R, Oudard S (2009) Pharmacokinetic analysis of two dosing schedules of the angiokinase inhibitor BIBF 1120 in patients with hormone-refractory prostate cancer who progressed after docetaxel treatment. Eur J Cancer Suppl 7:419, Abstract 7044CrossRefGoogle Scholar
  61. 61.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603PubMedCrossRefGoogle Scholar
  62. 62.
    du Bois A, Huober J, Stopfer P, Pfisterer J, Wimberger P, Loibl S, Reichardt VL, Harter P (2010) A phase I open-label dose-escalation study of oral BIBF 1120 combined with standard paclitaxel and carboplatin in patients with advanced gynecological malignancies. Ann Oncol 21:370–375PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Edgardo S. Santos
    • 1
  • Jorge E. Gomez
    • 1
  • Luis E. Raez
    • 1
  1. 1.Section of Thoracic Oncology, Sylvester Comprehensive Cancer CenterUniversity of Miami Leonard M. Miller School of MedicineMiamiUSA

Personalised recommendations