Investigational New Drugs

, Volume 30, Issue 3, pp 1248–1256

Irinotecan and DNA-PKcs inhibitors synergize in killing of colon cancer cells

  • David Davidson
  • Yannick Coulombe
  • Veronica L. Martinez-Marignac
  • Lilian Amrein
  • Jeremy Grenier
  • Keira Hodkinson
  • Jean-Yves Masson
  • Raquel Aloyz
  • Lawrence Panasci
Short Report


This study sought to measure the degree of synergy induced by specific small molecule inhibitors of DNA-PK [NU7026 and IC486241 (ICC)], a major component of the non-homologous end-joining (NHEJ) pathway, with SN38 or oxaliplatin. Synergy between the DNA damaging drugs and the DNA-PK inhibitors was assessed using the sulforhodamine-B assay (SRB). Effects of drug combinations on cell cycle and DNA-PK activity were determined using flow cytometry and western blot analysis. DNA damage was assessed via comet assay and quantification of γH2AX. The role of homologous recombination repair (HRR) was determined by nuclear Rad51 protein levels and a GFP reporter recombination assay. Significant reductions in the IC50 values of SN38 were observed at 5 and 10 μM of DNA-PK inhibitors. Moreover, at 1–2 μM (attainable concentrations with ICC in mice) these DNA-PKcs inhibitors demonstrated synergistic reductions in the IC50 of SN38. Flow cytometric data indicated that SN38 and SN38 in combination with DNA-PKcs inhibitors showed dramatic G2/M arrest at 24 h. Furthermore, reduced phosphorylation of DNA-PKcs and increased DNA damage were observed at this time point with SN38 in combination with DNA-PKcs inhibitors as compared to cells treated with SN38 alone. SN38 alone and in the presence of ICC increased nuclear Rad51 protein levels. Furthermore, inhibition of DNA-PKcs increased HRR suggesting that NHEJ is a negative regulator of HRR. These data indicate that small molecule inhibitors of DNA-PKcs dramatically enhance the efficacy of SN38 in colon cancer cell lines.


DNA-PK DNA-damage DNA-repair Non-homologous end joining Homologous recombination Breast cancer Anthracyclines Drug synergism 


  1. 1.
    Grothey A, Sargent D, Goldberg RM, Schmoll H-J (2004) Survival of patients with advanced colorectal cancer improves with the availability of fluorouracil-leucovorin, irinotecan, and oxaliplatin in the course of treatment. J Clin Oncol 22(7):1209–1214. doi:10.1200/jco.2004.11.037 PubMedCrossRefGoogle Scholar
  2. 2.
    Koopman M, Antonini NF, Douma J, Wals J, Honkoop AH, Erdkamp FL, de Jong RS, Rodenburg CJ, Vreugdenhil G, Loosveld OJ, van Bochove A, Sinnige HA, Creemers GJM, Tesselaar ME, Slee PHTJ, Werter MJ, Mol L, Dalesio O, Punt CJ (2007) Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (cairo): a phase iii randomised controlled trial. Lancet 370(9582):135PubMedCrossRefGoogle Scholar
  3. 3.
    Mayer RJ (2009) Targeted therapy for advanced colorectal cancer—more is not always better. N Engl J Med 360(6):623–625PubMedCrossRefGoogle Scholar
  4. 4.
    Seymour MT, Maughan TS, Ledermann JA, Topham C, James R, Gwyther SJ, Smith DB, Shepherd S, Maraveyas A, Ferry DR, Meade AM, Thompson L, Griffiths GO, Parmar MK, Stephens RJ (2007) Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (mrc focus): a randomised controlled trial. Lancet 370(9582):143PubMedCrossRefGoogle Scholar
  5. 5.
    Tol J, Koopman M, Cats A, Rodenburg CJ, Creemers GJM, Schrama JG, Erdkamp FLG, Vos AH, van Groeningen CJ, Sinnige HAM, Richel DJ, Voest EE, Dijkstra JR, Vink-Borger ME, Antonini NF, Mol L, van Krieken JHJM, Dalesio O, Punt CJA (2009) Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N Engl J Med 360(6):563–572PubMedCrossRefGoogle Scholar
  6. 6.
    Saltz LB, Douillard J-Y, Pirotta N, Alakl M, Gruia G, Awad L, Elfring GL, Locker PK, Miller LL (2001) Irinotecan plus fluorouracil/leucovorin for metastatic colorectal cancer: a new survival standard. Oncologist 6(1):81–91. doi:10.1634/theoncologist.6-1-81 PubMedCrossRefGoogle Scholar
  7. 7.
    Wang W, Ghandi A, Liebes L, Louie SG, Hofman FM, Schonthal AH, Chen TC (2010) Effective conversion of irinotecan to SN38 after intratumoral drug delivery to an intracranial murine glioma model in vivo. J Neurosurg. doi:10.3171/2010.2.JNS09719 Google Scholar
  8. 8.
    Tentori L, Leonetti C, Scarsella M, Muzi A, Mazzon E, Vergati M, Forini O, Lapidus R, Xu W, Dorio AS, Zhang J, Cuzzocrea S, Graziani G (2006) Inhibition of poly(adp-ribose) polymerase prevents irinotecan-induced intestinal damage and enhances irinotecan/temozolomide efficacy against colon carcinoma. FASEB J 20(10):1709–1711. doi:10.1096/fj.06-5916fje PubMedCrossRefGoogle Scholar
  9. 9.
    Burma S, Chen BPC, Chen DJ (2006) Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair 5(9–10):1042–1048PubMedCrossRefGoogle Scholar
  10. 10.
    Raftery L, Goldberg RM (2010) Optimal delivery of cytotoxic chemotherapy for colon cancer. Cancer J 16(3):214–219PubMedCrossRefGoogle Scholar
  11. 11.
    Noordhuis P, Laan AC, van de Born K, Losekoot N, Kathmann I, Peters GJ (2008) Oxaliplatin activity in selected and unselected human ovarian and colorectal cancer cell lines. Biochem Pharmacol 76(1):53–61PubMedCrossRefGoogle Scholar
  12. 12.
    Kuo CC, Liu JF, Chang JY (2006) DNA repair enzyme, O6-methylguanine DNA methyltransferase, modulates cytotoxicity of camptothecin-derived topoisomerase I inhibitors. J Pharmacol Exp Ther 316(2):946–954PubMedCrossRefGoogle Scholar
  13. 13.
    Stordal B, Pavlakis N, Davey R (2007) Oxaliplatin for the treatment of cisplatin-resistant cancer: a systematic review. Cancer Treat Rev 33(4):347–357PubMedCrossRefGoogle Scholar
  14. 14.
    Moynahan M, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenisis. Nat Rev Mol Cell Biol 11(3):196–207PubMedCrossRefGoogle Scholar
  15. 15.
    Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211PubMedCrossRefGoogle Scholar
  16. 16.
    Mansour WY, Schumacher S, Rosskopf R, Rhein T, Schmidt-Petersen F, Gatzemeier F, Haag F, Borgmann K, Willers H, Dahm-Daphi J (2008) Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 36(12):4088–4098PubMedCrossRefGoogle Scholar
  17. 17.
    Shinohara ET, Geng L, Tan J, Chen H, Shir Y, Edwards E, Halbrook J, Kesicki EA, Kashishian A, Hallahan DE (2005) DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 65(12):4987–4992PubMedCrossRefGoogle Scholar
  18. 18.
    Soubeyrand S, Pope L, Pakuts B, Hache JG (2003) Threonines 2638/2647 in DNA-PK are essential for cellular resistance to ionizing radiation. Cancer Res 63:1198–1201PubMedGoogle Scholar
  19. 19.
    Yang C, Betti C, Singh S, Toor A, Vaughan A (2009) Impaired NHEJ function in multiple myeloma. Mutat Res 660:66–73PubMedCrossRefGoogle Scholar
  20. 20.
    Willmore E, de Caux S, Sunter NJ, Tilby MJ, Jackson GH, Austin CA, Durkacz BW (2004) A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood 103:4659–4665PubMedCrossRefGoogle Scholar
  21. 21.
    Amrein L, Loignon M, Goulet A-C, Dunn M, Jean-Claude B, Aloyz R, Panasci L (2007) Chlorambucil cytotoxicity in malignant B lymphocytes is synergistically increased by 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026)-mediated inhibition of DNA double-strand break repair via inhibition of DNA-dependent protein kinase. J Pharmacol Exp Ther 321(3):848–855. doi:10.1124/jpet.106.118356 PubMedCrossRefGoogle Scholar
  22. 22.
    Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE (1981) Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res 41:1751–1756PubMedGoogle Scholar
  23. 23.
    Takemura HT, Rao VA, Sordet O, Furuta T, Miao Z-E, Meng L-H, Zhang H, Pommer Y (2006) Defective MRE11-dependent activation of CHK2 by ataxia telangiectasia mutated in colorectal carcinoma cells in rsponse to replication-dependent DNA double strand breaks. J Biol Chem 281(41):30814–30823PubMedCrossRefGoogle Scholar
  24. 24.
    Kleivi K, Teixeira MR, Ekanaes M, Diep CB, Jakobsen KS, Hamelin R, Lothe RA (2004) Genome signatures of colon carcinoma cell lines. Cancer Genet Cytogenet 155:119–131PubMedCrossRefGoogle Scholar
  25. 25.
    Laboisse CL, Augeron C (1984) Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res 44:3961–3969PubMedGoogle Scholar
  26. 26.
    Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1(3):1112–1116PubMedCrossRefGoogle Scholar
  27. 27.
    Berenbaum M (1992) Letter correspondence re: “Greco et al., applications of a new approach for the quantitation of drug synergism to the combination of c/s-diamminedichloroplatinum and 1-tf-d-arabinofuranosylcytosine. Cancer res., 50: 5318–5327, 1990.”. Cancer Res 52:4558–4565PubMedGoogle Scholar
  28. 28.
    Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1(1):23–29CrossRefGoogle Scholar
  29. 29.
    Pierce AJ, Johnson RD, Thompson LH, Jasin M (1999) XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13(20):2633–2638PubMedCrossRefGoogle Scholar
  30. 30.
    Uematsu N, Weterings E, Morotomi-Yano K, Jakob B, Taucher-Scholz G, Mari P-O, Chen DJ (2007) Autophosphorylation of DNA-PKcs regulates its dynamics at DNA double-strand breaks. J Cell Biol 177(2):219–229PubMedCrossRefGoogle Scholar
  31. 31.
    Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190(2):197–207. doi:10.1083/jcb.200911156 PubMedCrossRefGoogle Scholar
  32. 32.
    Zuco V, Benedetti V, Zunino F (2010) ATM- and ATR-mediated response to DNA damage induced by a novel camptothecin, ST1968. Cancer Lett 292:186–196PubMedCrossRefGoogle Scholar
  33. 33.
    Tomimatsu N, Mukharjee B, Burma S (2009) Distinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells. EMBO Rep 10(6):629–635PubMedCrossRefGoogle Scholar
  34. 34.
    Gurley KE, Moser M, Gu Y, Hasty P, Kemp CJ (2009) DNA-PK suppresses a p53-independent apoptotic response to DNA damage. EMBO Rep 10(1):87–93PubMedCrossRefGoogle Scholar
  35. 35.
    Rabik CA, Dolan ME (2007) Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33(1):9–23PubMedCrossRefGoogle Scholar
  36. 36.
    Mandic A, Hansson J, Linder S, Shoshan MC (2003) Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem 278(11):9100–9106. doi:10.1074/jbc.M210284200 PubMedCrossRefGoogle Scholar
  37. 37.
    Chen BPC, Chan DW, Kabayashi J, Burma S, Asaithamby A, Morotomi-Yano K, Botvinick E, Qin J, Chen DJ (2005) Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks. J Biol Chem 280(15):14709–14715PubMedCrossRefGoogle Scholar
  38. 38.
    Wu J, Yin M-B, Hapke G, Toth K, Rustum YM (2002) Induction of biphasic DNA double strand breaks and activation of multiple repair protein complexes by DNA topisomerase I drug 7-ehtyl-10-hydroxy-camptothecin. Mol Pharmacol 61(4):742–748PubMedCrossRefGoogle Scholar
  39. 39.
    Durocher D, Jackson PJ (2001) DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13:225–231PubMedCrossRefGoogle Scholar
  40. 40.
    Nutley BP, Smith NF, Hayes A, Kelland LR, Brunton L, Golding BT, Smith GCM, Martin NMB, Workman P, Raynaud FI (2005) Preclinical pharmacokinetics and metabolism of a novel prototype DNA-PK inhibitor NU7026. Br J Cancer 93(10):1011–1018PubMedGoogle Scholar
  41. 41.
    Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396PubMedCrossRefGoogle Scholar
  42. 42.
    Park E-J, Chan DW, Park J-H, Oettinger MA, Jongbum K (2003) DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res 31(23):6819–6827PubMedCrossRefGoogle Scholar
  43. 43.
    Koike M, Sugasawa J, Yasuda M, Koike A (2008) Tissue-specific DNA-PK-dependent H2AX phosphorylation and γ-H2AX elimination after x-irradiation in vivo. Biochem Biophys Res Commun 376:52–55PubMedCrossRefGoogle Scholar
  44. 44.
    Kim S-T, Lim D-S, Canman CE, Kastan MB (1999) Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 274(53):37538–37543PubMedCrossRefGoogle Scholar
  45. 45.
    An J, Huang Y-C, Xu Q, Zhou L, Shang Z-F, Huang B, Wang Y, Liu X-D, Zhou P-K (2010) DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression. BMC Molec Biol 11(18)Google Scholar
  46. 46.
    Yang J, Yingnian Y, Hamrick HE, Duerksen-Hughes J (2003) ATM, ATR and DNA-PK: Initiators of the cellular genotoxic stress responses. Carcinogenesis 24(10):1571–1580PubMedCrossRefGoogle Scholar
  47. 47.
    Yajima H, Lee K-J, Zhang S, Kobayashi J, Chen BPC (2008) DNA double-strand break formation upon UV-induced replication stress activates ATM and DNA-PKcs kinases. J Molec Biol 385(800-810)Google Scholar
  48. 48.
    Yajima H, Lee K-J, Benjamin PCC (2006) ATR-dependent DNA-PKcs phosphorylation in response to UV-induced replication stress. Molec Cell Biol 26:7520–7528PubMedCrossRefGoogle Scholar
  49. 49.
    Shrivastav M, Miller CA, de Haro LP, Durant ST, Chen BPC, Chen DJ, Nickoloff JA (2009) DNA-PKcs and ATM co-regulate DNA double-strand break repair. DNA Repair 8:920–929PubMedCrossRefGoogle Scholar
  50. 50.
    Kao J, Rosenstein BS, Peters S, Milano MT, Kron SJ (2005) Cellular response to DNA damage. Ann NY Acad Sci 1066:243–258PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David Davidson
    • 1
  • Yannick Coulombe
    • 2
  • Veronica L. Martinez-Marignac
    • 1
  • Lilian Amrein
    • 1
  • Jeremy Grenier
    • 1
  • Keira Hodkinson
    • 1
  • Jean-Yves Masson
    • 2
  • Raquel Aloyz
    • 1
  • Lawrence Panasci
    • 1
  1. 1.Montreal Centre for Experimental Therapeutics in Cancer—Segal Cancer Center—Lady Davis Institute—Jewish General HospitalMcGill UniversityMontréalCanada
  2. 2.Genome Stability Laboratory, Laval University Cancer Research Centre, Hôtel-Dieu de Québec Research Centre (CHUQ)QuébecCanada

Personalised recommendations