Investigational New Drugs

, Volume 30, Issue 2, pp 443–449 | Cite as

Restricted brain penetration of the tyrosine kinase inhibitor erlotinib due to the drug transporters P-gp and BCRP

  • Nienke A. de Vries
  • Tessa Buckle
  • Jin Zhao
  • Jos H. Beijnen
  • Jan H. M. Schellens
  • Olaf van TellingenEmail author


Purpose Erlotinib (Tarceva®, OSI-774) is a small molecule inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. As high-grade gliomas frequently show amplification, overexpression and/or mutation of EGFR, this drug has been tested in several clinical trials with glioblastoma patients, but unfortunately, with little success. As erlotinib is a known substrate of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) we have investigated the effect of these ABC-transporters on the brain penetration of erlotinib. Study design Erlotinib (50 mg/kg) was given by i.p. administration to wild-type (WT), Mdr1ab-/- (single P-gp knockout), Bcrp1-/- (single Bcrp1 knockout) and Mdr1ab-/-Bcrp1-/- (compound P-gp and Bcrp1 knockout) mice. Drug levels in plasma and tissues were determined by reversed-phase high-performance liquid chromatography. Results Relative to Mdr1ab-/-Bcrp1-/- mice that are deficient for both drug transporters, the area under the concentration time curve in brain tissue (AUC)brain of erlotinib decreased significantly by 1.6-fold in Mdr1ab-/- mice where Bcrp1 is present (49.6 ± 3.95 versus 31.1 ± 1.7, μg/g*h; P < 0.01). In Bcrp1-/- mice, were P-gp is present, a more pronounced 3.8-fold decrease to 13.0 ± 0.70, μg/g*h (P < 0.01) was observed, which is close to the 4.5-fold decrease in the AUCbrain of erlotinib found in WT mice where both drug transporters are present (11.0 ± 1.35, P < 0.01). The plasma clearance of erlotinib was similar in mice deficient for P-gp and/or Bcrp1 compared with wild-type mice. In all other tissues the differences between the genotypes were negligible. Conclusions Both P-gp and Bcrp1 reduce the brain penetration of erlotinib. Although P-gp appears to be the most effective factor limiting the brain penetration of erlotinib, the highest brain accumulation was observed when Bcrp1 was also absent. Strategies to inhibit P-gp/BCRP in patients to improve delivery of (novel molecular-targeted) substrate agents, such as erlotinib, to the brain may be required for treatment of intracranial malignancies.


Blood-brain barrier Brain tumor Erlotinib ABC transporters 


  1. 1.
    Yarden Y (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8PubMedCrossRefGoogle Scholar
  2. 2.
    Dancey JE, Freidlin B (2003) Targeting epidermal growth factor receptor–are we missing the mark? Lancet 362:62–64PubMedCrossRefGoogle Scholar
  3. 3.
    Shepherd FA, Rodrigues PJ, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R, van KM, Dediu M, Findlay B, Tu D, Johnston D, Bezjak A, Clark G, Santabarbara P, Seymour L (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132PubMedCrossRefGoogle Scholar
  4. 4.
    Riely GJ, Politi KA, Miller VA, Pao W (2006) Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 12:7232–7241PubMedCrossRefGoogle Scholar
  5. 5.
    Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N, O'Fallon JR, Schaefer PL, Scheithauer BW, James CD, Buckner JC, Jenkins RB (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256PubMedCrossRefGoogle Scholar
  6. 6.
    Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223PubMedCrossRefGoogle Scholar
  7. 7.
    Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, Makino K, Saya H, Hirano H, Kuratsu J, Oka K, Ishimaru Y, Ushio Y (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63:6962–6970PubMedGoogle Scholar
  8. 8.
    Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387PubMedGoogle Scholar
  9. 9.
    Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A 89:2965–2969PubMedCrossRefGoogle Scholar
  10. 10.
    Aldape KD, Ballman K, Furth A, Buckner JC, Giannini C, Burger PC, Scheithauer BW, Jenkins RB, James CD (2004) Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol 63:700–707PubMedGoogle Scholar
  11. 11.
    Lee JC, Vivanco I, Beroukhim R, Huang JH, Feng WL, DeBiasi RM, Yoshimoto K, King JC, Nghiemphu P, Yuza Y, Xu Q, Greulich H, Thomas RK, Paez JG, Peck TC, Linhart DJ, Glatt KA, Getz G, Onofrio R, Ziaugra L, Levine RL, Gabriel S, Kawaguchi T, O'Neill K, Khan H, Liau LM, Nelson SF, Rao PN, Mischel P, Pieper RO, Cloughesy T, Leahy DJ, Sellers WR, Sawyers CL, Meyerson M, Mellinghoff IK (2006) Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain. PLoS Med 3:e485PubMedCrossRefGoogle Scholar
  12. 12.
    Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, Wikstrand CJ, Van Duyn LB, Dancey JE, McLendon RE, Kao JC, Stenzel TT, hmed Rasheed BK, Tourt-Uhlig SE, Herndon JE, Vredenburgh JJ, Sampson JH, Friedman AH, Bigner DD, Friedman HS (2004) Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 22:133–142PubMedCrossRefGoogle Scholar
  13. 13.
    Franceschi E, Cavallo G, Lonardi S, Magrini E, Tosoni A, Grosso D, Scopece L, Blatt V, Urbini B, Pession A, Tallini G, Crino L, Brandes AA (2007) Gefitinib in patients with progressive high-grade gliomas: a multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br J Cancer 96:1047–1051PubMedCrossRefGoogle Scholar
  14. 14.
    Prados MD, Lamborn KR, Chang S, Burton E, Butowski N, Malec M, Kapadia A, Rabbitt J, Page MS, Fedoroff A, Xie D, Kelley SK (2006) Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro Oncol 8:67–78PubMedCrossRefGoogle Scholar
  15. 15.
    Krishnan S, Brown PD, Ballman KV, Fiveash JB, Uhm JH, Giannini C, Jaeckle KA, Geoffroy FJ, Nabors LB, Buckner JC (2006) Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: results of North Central Cancer Treatment Group protocol N0177. Int J Radiat Oncol Biol Phys 65:1192–1199PubMedCrossRefGoogle Scholar
  16. 16.
    Halatsch ME, Schmidt U, Behnke-Mursch J, Unterberg A, Wirtz CR (2006) Epidermal growth factor receptor inhibition for the treatment of glioblastoma multiforme and other malignant brain tumours. Cancer Treat Rev 32:74–89PubMedCrossRefGoogle Scholar
  17. 17.
    van den Bent MJ, Brandes AA, Rampling R, Kouwenhoven MC, Kros JM, Carpentier AF, Clement PM, Frenay M, Campone M, Baurain JF, Armand JP, Taphoorn MJ, Tosoni A, Kletzl H, Klughammer B, Lacombe D, Gorlia T (2009) Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 27:1268–1274PubMedCrossRefGoogle Scholar
  18. 18.
    Pardridge WM (2003) Molecular biology of the blood-brain barrier. Methods Mol Med 89:385–399PubMedGoogle Scholar
  19. 19.
    Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3(90–105):51Google Scholar
  20. 20.
    Deeken JF, Loscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674PubMedCrossRefGoogle Scholar
  21. 21.
    Dai H, Marbach P, Lemaire M, Hayes M, Elmquist WF (2003) Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 304:1085–1092PubMedCrossRefGoogle Scholar
  22. 22.
    Bihorel S, Camenisch G, Lemaire M, Scherrmann JM (2007) Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood-brain barrier. J Neurochem 102:1749–1757PubMedCrossRefGoogle Scholar
  23. 23.
    Oostendorp RL, Buckle T, Beijnen JH, van Tellingen O, Schellens JH (2009) The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs 27:31–40PubMedCrossRefGoogle Scholar
  24. 24.
    Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, Varadi A, Keri G, Orfi L, Nemet K, Sarkadi B (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65:1485–1495PubMedCrossRefGoogle Scholar
  25. 25.
    Elkind NB, Szentpetery Z, Apati A, Ozvegy-Laczka C, Varady G, Ujhelly O, Szabo K, Homolya L, Varadi A, Buday L, Keri G, Nemet K, Sarkadi B (2005) Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 65:1770–1777PubMedCrossRefGoogle Scholar
  26. 26.
    Nakamura Y, Oka M, Soda H, Shiozawa K, Yoshikawa M, Itoh A, Ikegami Y, Tsurutani J, Nakatomi K, Kitazaki T, Doi S, Yoshida H, Kohno S (2005) Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 65:1541–1546PubMedCrossRefGoogle Scholar
  27. 27.
    Yanase K, Tsukahara S, Asada S, Ishikawa E, Imai Y, Sugimoto Y (2004) Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 3:1119–1125PubMedGoogle Scholar
  28. 28.
    Yang CH, Huang CJ, Yang CS, Chu YC, Cheng AL, Whang-Peng J, Yang PC (2005) Gefitinib reverses chemotherapy resistance in gefitinib-insensitive multidrug resistant cancer cells expressing ATP-binding cassette family protein. Cancer Res 65:6943–6949PubMedCrossRefGoogle Scholar
  29. 29.
    Nagashima S, Soda H, Oka M, Kitazaki T, Shiozawa K, Nakamura Y, Takemura M, Yabuuchi H, Fukuda M, Tsukamoto K, Kohno S (2006) BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer. Cancer Chemother Pharmacol 58:594–600PubMedCrossRefGoogle Scholar
  30. 30.
    Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E, Traxler P (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64:2333–2337PubMedCrossRefGoogle Scholar
  31. 31.
    Kitazaki T, Oka M, Nakamura Y, Tsurutani J, Doi S, Yasunaga M, Takemura M, Yabuuchi H, Soda H, Kohno S (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49:337–343PubMedCrossRefGoogle Scholar
  32. 32.
    Leggas M, Panetta JC, Zhuang Y, Schuetz JD, Johnston B, Bai F, Sorrentino B, Zhou S, Houghton PJ, Stewart CF (2006) Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 66:4802–4807PubMedCrossRefGoogle Scholar
  33. 33.
    Stewart CF, Leggas M, Schuetz JD, Panetta JC, Cheshire PJ, Peterson J, Daw N, Jenkins JJ III, Gilbertson R, Germain GS, Harwood FC, Houghton PJ (2004) Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 64:7491–7499PubMedCrossRefGoogle Scholar
  34. 34.
    Zhuang Y, Fraga CH, Hubbard KE, Hagedorn N, Panetta JC, Waters CM, Stewart CF (2006) Topotecan central nervous system penetration is altered by a tyrosine kinase inhibitor. Cancer Res 66:11305–11313PubMedCrossRefGoogle Scholar
  35. 35.
    Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE, Hidalgo M, Baker SD (2007) Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 6:432–438PubMedCrossRefGoogle Scholar
  36. 36.
    Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR Jr, Fu LW, Ambudkar SV, Chen ZS (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67:11012–11020PubMedCrossRefGoogle Scholar
  37. 37.
    Marchetti S, de Vries NA, Buckle T, Bolijn MJ, van Eijndhoven MA, Beijnen JH, Mazzanti R, van Tellingen O, Schellens JH (2008) Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol Cancer Ther 7:2280–2287PubMedCrossRefGoogle Scholar
  38. 38.
    Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CAAM, van der Valk MA, Robanus-Maandag EC, te Riele HPJ, Berns AJM, Borst P (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502PubMedCrossRefGoogle Scholar
  39. 39.
    Loscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76PubMedCrossRefGoogle Scholar
  40. 40.
    de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, van Tellingen O (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13:6440–6449PubMedCrossRefGoogle Scholar
  41. 41.
    Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M, Berger MS, Stokoe D (2005) Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst 97:880–887PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nienke A. de Vries
    • 1
  • Tessa Buckle
    • 1
  • Jin Zhao
    • 1
  • Jos H. Beijnen
    • 2
    • 3
    • 4
  • Jan H. M. Schellens
    • 3
    • 4
  • Olaf van Tellingen
    • 1
    Email author
  1. 1.Department of Clinical ChemistryThe Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital)AmsterdamThe Netherlands
  2. 2.Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/ Slotervaart HospitalAmsterdamThe Netherlands
  3. 3.Department of Experimental Therapy and Medical OncologyThe Netherlands Cancer Institute (Antoni van Leeuwenhoek Hospital)AmsterdamThe Netherlands
  4. 4.Department of Drug Toxicology, Faculty of PharmacyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations