Investigational New Drugs

, Volume 29, Issue 6, pp 1206–1212 | Cite as

The synthetic heat shock protein 90 (Hsp90) inhibitor EC141 induces degradation of Bcr-Abl p190 protein and apoptosis of Ph-positive acute lymphoblastic leukemia cells

  • Wei-Gang Tong
  • Zeev Estrov
  • Yongtao Wang
  • Susan O’Brien
  • Stefan Faderl
  • David M. Harris
  • Quin Van Pham
  • Inbal Hazan-Halevy
  • Zhiming Liu
  • Patricia Koch
  • Hagop Kantarjian
  • Michael J. Keating
  • Alessandra Ferrajoli
PRECLINICAL STUDIES

Summary

The prognosis of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is poor. Chemotherapy is rarely curative and tyrosine kinase inhibitors (TKIs) induce only transient responses. Heat shock protein 90 (Hsp90) is a chaperone protein that is important in signal transduction, cell cycle control, and transcription regulation in both normal and leukemia cells. In the current study, we tested the growth inhibitory and apoptotic effects of a novel Hsp90 inhibitor, EC141 on the Ph+ ALL lines Z-119, Z-181, and Z-33, as well as primary bone marrow-derived blasts from patients with newly diagnosed Ph+ ALL. We found that EC141 inhibited the growth of Ph+ ALL cells in a concentration-dependent manner with IC50 ranged from 1 to 10 nM. EC141 also inhibited the proliferation of primary bone marrow-derived blasts using the ALL blast colony assay. EC141 down-regulated Hsp90 and up-regulated Hsp70 protein levels, inhibited CrkL phosphorylation, and induced degradation of Bcr-Abl p190 protein through ubiquitin-dependent proteasomal pathway. Furthermore, exposure of Ph+ ALL cells to EC141 resulted in activation of caspase-3, cleavage of poly (ADP-ribose) polymerase (PARP), and induction of apoptosis. In conclusion, our data suggest that EC141 is a potent Hsp90 inhibitor with activity against Ph+ ALL. Further studies to investigate the anticancer effect of EC141 either as a single agent, or in combination in Ph+ ALL and other hematological malignancies are warranted.

Keywords

Leukemia Hsp90 inhibitor EC141 Apoptosis Ph+ ALL 

References

  1. 1.
    Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247:1079–1082PubMedCrossRefGoogle Scholar
  2. 2.
    Faderl S, Kantarjian HM, Talpaz M, Estrov Z (1998) Clinical significance of cytogenetic abnormalities in adult acute lymphoblastic leukemia. Blood 91:3995–4019PubMedGoogle Scholar
  3. 3.
    Larson RA (2006) Management of acute lymphoblastic leukemia in older patients. Semin Hematol 43:126–133PubMedCrossRefGoogle Scholar
  4. 4.
    Thomas DA (2007) Philadelphia chromosome positive acute lymphocytic leukemia: a new era of challenges. Hematology Am Soc Hematol Educ Program 2007:435–443Google Scholar
  5. 5.
    Voncken JW, Kaartinen V, Pattengale PK, Germeraad WT, Groffen J, Heisterkamp N (1995) BCR/ABL P210 and P190 cause distinct leukemia in transgenic mice. Blood 86:4603–4611PubMedGoogle Scholar
  6. 6.
    Faderl S, Kantarjian HM, Thomas DA (2000) Outcome of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Leuk Lymphoma 36:263–273PubMedCrossRefGoogle Scholar
  7. 7.
    Dombret H, Gabert J, Boiron JM (2002) Outcome of treatment in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia-results of the prospective multicenter LALA-94 trial. Blood 100:2357–2366PubMedCrossRefGoogle Scholar
  8. 8.
    Druker BJ, Sawyers CL, Kantarjian H (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042PubMedCrossRefGoogle Scholar
  9. 9.
    Thomas DA, Faderl S, Cortes J, Kantarjian HM (2004) Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood 103:4396–4407PubMedCrossRefGoogle Scholar
  10. 10.
    Gorre ME, Mohammed M, Ellwood K (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293:876–880PubMedCrossRefGoogle Scholar
  11. 11.
    Shah NP, Nicoll JM, Nagar B (2002) Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2:117–125PubMedCrossRefGoogle Scholar
  12. 12.
    Welch WJ, Feramisco JR (1982) Purification of the major mammalian heat shock proteins. J Biol Chem 257:14949–14959PubMedGoogle Scholar
  13. 13.
    Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann NY Acad Sci 1113:202–216PubMedCrossRefGoogle Scholar
  14. 14.
    Banerji U (2009) Heat shock protein 90 as a drug target: some like it hot. Clin Cancer Res 15:9–14PubMedCrossRefGoogle Scholar
  15. 15.
    Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3:213–217PubMedCrossRefGoogle Scholar
  16. 16.
    Williams CR, Tabios R, Linehan WM, Neckers L (2007) Intratumor injection of the Hsp90 inhibitor 17AAG decreases tumor growth and induces apoptosis in a prostate cancer xenograft model. J Urol 178:1528–1532PubMedCrossRefGoogle Scholar
  17. 17.
    Estrov Z, Talpaz M, Zipf TF (1996) Role of granulocyte-macrophage colony-stimulating factor in Philadelphia (Ph1)-positive acute lymphoblastic leukemia: studies on two newly established Ph1-positive acute lymphoblastic leukemia cell lines (Z-119 and Z-181). J Cell Physiol 166:618–630PubMedCrossRefGoogle Scholar
  18. 18.
    Estrov Z, Talpaz M, Ku S (1996) Molecular and biologic characterization of a newly established Philadelphia-positive acute lymphoblastic leukemia cell line (Z-33) with an autocrine response to GM-CSF. Leukemia 10:1534–1543PubMedGoogle Scholar
  19. 19.
    Estrov Z, Manna SK, Harris D (1999) Phenylarsine oxide blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, and induces apoptosis of acute myelogenous leukemia cells. Blood 94:2844–2853PubMedGoogle Scholar
  20. 20.
    Faderl S, Lotan R, Kantarjian HM, Harris D, Van Q, Estrov Z (2003) N-(4-Hydroxylphenyl)retinamide (fenretinide, 4-HPR), a retinoid compound with antileukemic and proapoptotic activity in acute lymphoblastic leukemia (ALL). Leuk Res 27:259–266PubMedCrossRefGoogle Scholar
  21. 21.
    Roberts WM, Estrov Z, Ouspenskaia MV, Johnston DA, McClain KL, Zipf TF (1997) Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med 336:317–323PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson AJ, Wagner AJ, Cheney CM (2007) Rituximab and 17-allylamino-17-demethoxygeldanamycin induce synergistic apoptosis in B-cell chronic lymphocytic leukaemia. Br J Haematol 139:837–844PubMedCrossRefGoogle Scholar
  23. 23.
    Radujkovic A, Schad M, Topaly J (2005) Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL-Inhibition of P-glycoprotein function by 17-AAG. Leukemia 19:1198–1206PubMedCrossRefGoogle Scholar
  24. 24.
    Wu LX, Xu JH, Zhang KZ (2008) Disruption of the Bcr-Abl/Hsp90 protein complex: a possible mechanism to inhibit Bcr-Abl-positive human leukemic blasts by novobiocin. Leukemia 22:1402–1409PubMedCrossRefGoogle Scholar
  25. 25.
    Neckers L (2007) Heat shock protein 90: the cancer chaperone. J Biosci 32:517–530PubMedCrossRefGoogle Scholar
  26. 26.
    Solit DB, Osman I, Polsky D (2008) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14:8302–8307PubMedCrossRefGoogle Scholar
  27. 27.
    Neckers L (2002) Heat shock protein 90 is a rational molecular target in breast cancer. Breast Dis 15:53–60PubMedGoogle Scholar
  28. 28.
    George P, Bali P, Annvarapu S (2005) Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of the FLT-3. Blood 105:1768–1776PubMedCrossRefGoogle Scholar
  29. 29.
    Mesa RA, Loegering D, Powell HL (2005) Heat shock protein 90 inhibition sensitizes acute myelogenous leukemia cells to cytarabine. Blood 106:318–327PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Wei-Gang Tong
    • 1
  • Zeev Estrov
    • 1
  • Yongtao Wang
    • 1
  • Susan O’Brien
    • 1
  • Stefan Faderl
    • 1
  • David M. Harris
    • 1
  • Quin Van Pham
    • 1
  • Inbal Hazan-Halevy
    • 1
  • Zhiming Liu
    • 1
  • Patricia Koch
    • 1
  • Hagop Kantarjian
    • 1
  • Michael J. Keating
    • 1
  • Alessandra Ferrajoli
    • 1
  1. 1.Department of Leukemia, Unit 428The University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations