Investigational New Drugs

, Volume 29, Issue 6, pp 1143–1155 | Cite as

LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: a novel class of agent with high apoptotic effect in chronic myeloid leukemia cells

  • Raquel C. Maia
  • Flavia C. Vasconcelos
  • Thiago de Sá Bacelar
  • Eduardo J. Salustiano
  • Luis Felipe R. da Silva
  • Débora L. Pereira
  • Arthur Moellman-Coelho
  • Chaquip D. Netto
  • Alcides J. da Silva
  • Vivian M. Rumjanek
  • Paulo R. R. Costa


Despite the relevant therapeutic progresses obtained with imatinib, clinical resistance to this drug has emerged and reemerged after cytogenetic remission in a group of patients with chronic myeloid leukemia (CML). Therefore, novel treatment strategies are needed. In this study, we evaluated the anti-CML activity and mechanisms of action of LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]. LQB-118 treatment resulted in an important reduction of cell viability in cell lines derived from CML, both the vincristine-sensitive K562 cell line, and the resistant K562-Lucena (a cell line overexpressing P-glycoprotein). In agreement with these results, the induction of caspase-3 activation by this compound indicated that a significant rate of apoptosis was taking place. In these cell lines, apoptosis induced by LQB-118 was accompanied by a reduction of P-glycoprotein, survivin, and XIAP expression. Moreover, this effect was not restricted to cell lines as LQB-118 produced significant apoptosis rate in cells from CML patients exhibiting multifactorial drug resistance phenotype such as P-glycoprotein, MRP1 and p53 overexpression. The data suggest that LQB-118 has a potent anti-CML activity that can overcome multifactorial drug resistance mechanisms, making this compound a promising new anti-CML agent.


Chronic myeloid leukemia Pterocarpanquinone LQB-118 Multidrug resistance IAPs ABC transporter proteins 



This work was supported by grants from FINEP, FAPERJ-PensaRio, INCT, CNPq and Swissbridge Foundation.


  1. 1.
    Rowley JD (1973) Letter: a new consistent chromossonal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giensa staining. Nature 243:290–293PubMedCrossRefGoogle Scholar
  2. 2.
    Lugo TG, Pendergast AM, Muller AJ, Witte ON (1990) Tyrosine kinase activity and transformation potency of BCR-ABL oncogene products. Science 247:1079–1082PubMedCrossRefGoogle Scholar
  3. 3.
    Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112:4808–4817PubMedCrossRefGoogle Scholar
  4. 4.
    Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L (2003) Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet 4:75–85CrossRefGoogle Scholar
  5. 5.
    Melo JV, Chuah C (2007) Resistance to imatinib mesylate in chronic myeloid leukaemia. Cancer Lett 249:121–132PubMedCrossRefGoogle Scholar
  6. 6.
    Baccarini M, Saglio G, Goldman JM, Hochhaus A, Simonsson B, Appelbaum E et al (2006) Evolving concepts in the management of chronic myeloid leukemia. Recommendations from an expert panel on behalf of the European Leukemia-net. Blood 108:1809–1820CrossRefGoogle Scholar
  7. 7.
    Volpe G, Panuzzo C, Ulisciani S, Cilloni D (2009) Imatinib resistance in CML. Cancer Lett 274:1–9PubMedCrossRefGoogle Scholar
  8. 8.
    Krorashad JS, Anabd M, Marin D, Saunders S, Al-Jabary T, Iqbal A et al (2006) The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib. Leukemia 20:658–663CrossRefGoogle Scholar
  9. 9.
    Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745PubMedCrossRefGoogle Scholar
  10. 10.
    Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS et al (2006) Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci USA 103:7444–7449PubMedCrossRefGoogle Scholar
  11. 11.
    Illmer T, Schaich M, Platzbecker U, Freiberg-Richter J, Oelschlãgel U, von Bonin M et al (2004) P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 18:401–408PubMedCrossRefGoogle Scholar
  12. 12.
    Wrzesień-Kuś A, Smolewski P, Sobczak-Pluta A, Wierzbowska A, Robak T (2004) The inhibitor of apoptosis protein family and its antagonists in acute leukemias. Apoptosis 9:705–715PubMedCrossRefGoogle Scholar
  13. 13.
    Deremer DL, Ustun C, Natarajan K (2008) Nilotinib: a second-generation tyrosine kinase inhibitor for the treatment of chronic myelogenous leucemia. Clin Ther 30:1956–1975PubMedCrossRefGoogle Scholar
  14. 14.
    Mahon F-X, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F et al (2008) Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res 68:9809–9816PubMedCrossRefGoogle Scholar
  15. 15.
    Mahon F-X, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J et al (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101:2368–2373PubMedCrossRefGoogle Scholar
  16. 16.
    Netto CD, Santos ES, Castro CP, da Silva AJ, Rumjanek VM, Costa PR (2009) (+/−)-3, 4-Dihydroxy-8, 9-methylenedioxypterocarpan and derivatives: cytotoxic effect on human leukemia cell lines. Eur J Med Chem 44:920–925PubMedCrossRefGoogle Scholar
  17. 17.
    Netto CD, Silva AJ, Salustiano EJ, Rica IG, Cavalcante MC, Rumjanek VM et al (2010) New Pterocarpanquinones: synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-a modulation in human PBMC cells. Bioorg Med Chem 18:1610–1616PubMedCrossRefGoogle Scholar
  18. 18.
    Trindade GS, Capella MA, Capella LS, Affonso-Mitidieri OR, Rumjanek VM (1999) Differences in sensitivity to UVC, UVB and UVA radiation of a multidrug-resistant cell line overexpressing P-glycoprotein. Photochem Photobiol 69:694–699PubMedCrossRefGoogle Scholar
  19. 19.
    Rumjanek VM, Trindade GS, Wagner-Souza K, de-Oliveira MC, Marques-Santos LF, Maia RC et al (2001) Multidrug resistance in tumour cells: characterization of the multidrug resistant cell line K562-Lucena 1. An Acad Bras Cien 73:57–69CrossRefGoogle Scholar
  20. 20.
    Sokal JE, Cox EB, Baccarini M, Tura S, Gomez GA, Robertson JE et al (1984) Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood 63:789–799PubMedGoogle Scholar
  21. 21.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and citotoxicity assays. J Immunol Meth 65:55–63CrossRefGoogle Scholar
  22. 22.
    Vasconcelos FC, Gattass CR, Rumjanek VM, Maia RC (2007) Pomolic acid-induced apoptosis in cells from patients with chronic myeloid leukemia exhibiting different drug resistance profile. Invest New Drugs 25:525–533PubMedCrossRefGoogle Scholar
  23. 23.
    Vasconcelos FC, Cavalcanti GB Jr, Silva KL, de Meis E, Kwee JK, Rumjanek VM et al (2007) Contrasting features of MDR phenotype in leukemias by using two fluorochromes: implications for clinical practice. Leuk Res 31:445–454PubMedCrossRefGoogle Scholar
  24. 24.
    Huet S, Marie J-P, Gualde N, Robert J (1998) Reference method for detection of P-gp mediated multi-drug resistance in human hematological malignancies: a method validated by the laboratories of the French Drug Resistance Network. Cytometry 34:248–256PubMedCrossRefGoogle Scholar
  25. 25.
    Legrand O, Simonin G, Perrot J-Y, Zittoun R, Marie JP (1998) Pgp and MRP activities using calcein-AM are prognostic factors in acute myeloid leukemia patients. Blood 91:4480–4488PubMedGoogle Scholar
  26. 26.
    Hu XF, Slater A, Kantharidis P, Rischin S, Juneja S, Rossi R et al (1999) Altered multi-drug resistance phenotype caused by anthracycline analogues and cytosine arabinoside in myeloid leukemia. Blood 93:4086–4095PubMedGoogle Scholar
  27. 27.
    Cavalcanti GB Jr, Vasconcelos FC, Pinto GF, Scheiner MA, Dobbin JA, Klumb CE et al (2004) Coexpression of p53 protein and MDR functional phenotype in leukemias: the predominant association in chronic myeloid leukemia. Cytometry 61B:1–8CrossRefGoogle Scholar
  28. 28.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  29. 29.
    Kwee JK, Luque DG, Ferreira ACS, Vasconcelos FC, Silva KL, Klumb CE et al (2008) Modulation of reactive oxygen species by antioxidants in chronic myeloid leukemia cells enhances imatinib sensitivity through survivin downregulation. Anticancer Drugs 19:975–981PubMedCrossRefGoogle Scholar
  30. 30.
    Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ (1994) CrkL is the major tyrosine-phosphorulated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 269:22925–22928PubMedGoogle Scholar
  31. 31.
    White D, Saunders V, Lyons AB, Branford S, Grigg A, Bik To L et al (2005) In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood 106:2520–2526PubMedCrossRefGoogle Scholar
  32. 32.
    Bixby D, Talpaz M (2009) Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance. Hematology Am Soc Hematol Educ Program 461–476Google Scholar
  33. 33.
    Zörnig M, Hueber A-O, Baum W, Evan G (2001) Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 1551:F1–F37PubMedGoogle Scholar
  34. 34.
    Carter BZ, Mak DH, Schober WD, Cabreira-Hansen M, Beran M, McQueen T et al (2006) Regulation of survivin expression through Bcr-Abl/MAPK cascade: targeting survivin overcomes imatinib resistance and increases imatinib sensitivity in imatinib-responsive CML cells. Blood 107:1555–1563PubMedCrossRefGoogle Scholar
  35. 35.
    Duffy MJ, O’Donovan N, Brennan DJ, Gallagher WM, Ryan BM (2007) Survivin: a promising tumor biomarker. Cancer Lett 249:49–60PubMedCrossRefGoogle Scholar
  36. 36.
    Mahotka C, Liebmann J, Wenzel M, Suschek CV, Schmitt M, Gabbert HE et al (2001) Differencial subcellular localization of functionally divergent splice variants. Cell Death Differ 9:1334–1342CrossRefGoogle Scholar
  37. 37.
    Feng L, Xie Z-H, Cai G-P, Jiang Y-Y (2007) The effect of survivin on multidrug resistance mediated by P-glycoprotein in MCF-7 and its adriamycin resistant cells. Biol Pharm Bull 30:2279–2283CrossRefGoogle Scholar
  38. 38.
    Johnstone RW, Cretney E, Smyth MJ (1999) P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood 93:1075–1085PubMedGoogle Scholar
  39. 39.
    Tainton KM, Smyth MJ, Jackson JT, Tanner JE, Cerruti L, Jane SM et al (2004) Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux. Cell Death Differ 11:1028–1037PubMedCrossRefGoogle Scholar
  40. 40.
    Binifazi F, de Vivo A, Rosti G et al (2001) Chronic myeloid leukemia and interferon α: a study of complete cytogenetic responders. Blood 98:3074–3081CrossRefGoogle Scholar
  41. 41.
    Castagnetti F, Palandri F, Amabile M, Testoni N, Luatti S, Soverini S et al (2009) Results of high-dose imatinib mesylate in intermediate Sokal risk chronic myeloid leukemia patients in early chronic phase: a phase 2 trial of the GINEMA CML Working Party. Blood 113:3428–3434PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Raquel C. Maia
    • 1
    • 2
    • 6
  • Flavia C. Vasconcelos
    • 1
    • 2
  • Thiago de Sá Bacelar
    • 3
  • Eduardo J. Salustiano
    • 3
  • Luis Felipe R. da Silva
    • 1
    • 2
  • Débora L. Pereira
    • 1
    • 2
  • Arthur Moellman-Coelho
    • 2
  • Chaquip D. Netto
    • 4
  • Alcides J. da Silva
    • 5
  • Vivian M. Rumjanek
    • 3
  • Paulo R. R. Costa
    • 5
  1. 1.Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia MolecularInstituto Nacional de Câncer (INCA)Rio de JaneiroBrazil
  2. 2.Serviço de Hematologia, Hospital do Câncer IINCARio de JaneiroBrazil
  3. 3.Laboratório de Imunologia Tumoral, Instituto de Bioquímica MédicaUniversidade Federal do Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  4. 4.Laboratório de Química Orgânica, Instituto de QuímicaUFRJ, CampusMacaéBrazil
  5. 5.Laboratório de Química Bioorgânica (LQB), Núcleo de Pesquisas de Produtos Naturais (NPPN), Centro de Ciências da SaúdeUFRJRio de JaneiroBrazil
  6. 6.Laboratório de Hemato-Oncologia Celular e Molecular, Hospital do Câncer IInstituto Nacional de CâncerRio de JaneiroBrazil

Personalised recommendations