Investigational New Drugs

, Volume 29, Issue 5, pp 912–920 | Cite as

Geranylgeranyl diphosphate depletion inhibits breast cancer cell migration

PRECLINICAL STUDIES

Summary

The objective of this study was to determine whether geranylgeranyl diphosphate synthase inhibition, and therefore geranylgeranyl diphosphate depletion, interferes with breast cancer cell migration. Digeranyl bisphosphonate is a specific geranylgeranyl diphosphate synthase inhibitor. We demonstrate that digeranyl bisphosphonate depleted geranylgeranyl diphosphate and inhibited protein geranylgeranylation in MDA-MB-231 cells. Similar to GGTI-286, a GGTase I inhibitor, digeranyl bisphosphate significantly inhibited migration of MDA-MB-231 cells as measured by transwell assay. Similarly, digeranyl bisphosphonate reduced motility of MDA-MB-231 cells in a time-dependent manner as measured by large scale digital cell analysis system microscopy. Digeranyl bisphosphonate was mildly toxic and did not induce apoptosis. Treatment of MDA-MB-231 cells with digeranyl bisphosphonate decreased membrane while it increased cytosolic RhoA localization. In addition, digeranyl bisphosphonate increased RhoA GTP binding in MDA-MB-231 cells. The specificity of geranylgeranyl diphosphonate synthase inhibition by digeranyl bisphosphonate was confirmed by exogenous addition of geranylgeranyl diphosphate. Geranylgeranyl diphosphate addition prevented the effects of digeranyl bisphosphonate on migration, RhoA localization, and GTP binding to RhoA in MDA-MB-231 cells. These studies suggest that geranylgeranyl diphosphate synthase inhibitors are a novel approach to interfere with cancer cell migration.

Keywords

Isoprenoid Mevalonate Digeranyl bisphosphonate Geranylgeranyl diphosphate Geranylgeranyl diphosphate synthase Migration 

References

  1. 1.
    Grundy SM (1988) HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 319:24–33PubMedCrossRefGoogle Scholar
  2. 2.
    Holstein SA, Hohl RJ (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39:293–309PubMedCrossRefGoogle Scholar
  3. 3.
    van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999) Nitrogen-containing bisphosphonates inhibit isopentenyl pyrophosphate isomerase/farnesyl pyrophosphate synthase activity with relative potencies corresponding to their antiresorptive potencies in vitro and in vivo. Biochem Biophys Res Commun 255:491–494PubMedCrossRefGoogle Scholar
  4. 4.
    Licata AA (2005) Discovery, clinical development, and therapeutic uses of bisphosphonates. Ann Pharmacother 39:668–677PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269PubMedCrossRefGoogle Scholar
  6. 6.
    Glomset JA, Farnsworth CC (1994) Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Annu Rev Cell Biol 10:181–205PubMedCrossRefGoogle Scholar
  7. 7.
    Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846PubMedCrossRefGoogle Scholar
  8. 8.
    Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22PubMedCrossRefGoogle Scholar
  9. 9.
    Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142PubMedCrossRefGoogle Scholar
  10. 10.
    Swanson KM, Hohl RJ (2006) Anti-cancer therapy: targeting the mevalonate pathway. Curr Cancer Drug Targets 6:15–37PubMedCrossRefGoogle Scholar
  11. 11.
    Seiki S, Frishman WH (2009) Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia. Cardiol Rev 17:70–76PubMedCrossRefGoogle Scholar
  12. 12.
    Sepp-Lorenzino L, Ma Z, Rands E, Kohl NE, Gibbs JB, Oliff A, Rosen N (1995) A peptidomimetic inhibitor of farnesyl:protein transferase blocks the anchorage-dependent and -independent growth of human tumor cell lines. Cancer Res 55:5302–5309PubMedGoogle Scholar
  13. 13.
    Gunning WT, Kramer PM, Lubet RA, Steele VE, End DW, Wouters W, Pereira MA (2003) Chemoprevention of benzo(a)pyrene-induced lung tumors in mice by the farnesyltransferase inhibitor R115777. Clin Cancer Res 9:1927–1930PubMedGoogle Scholar
  14. 14.
    Zhang Z, Wang Y, Lantry LE, Kastens E, Liu G, Hamilton AD, Sebti SM, Lubet RA, You M (2003) Farnesyltransferase inhibitors are potent lung cancer chemopreventive agents in A/J mice with a dominant-negative p53 and/or heterozygous deletion of Ink4a/Arf. Oncogene 22:6257–6265PubMedCrossRefGoogle Scholar
  15. 15.
    Rao S, Cunningham D, de Gramont A, Scheithauer W, Smakal M, Humblet Y, Kourteva G, Iveson T, Andre T, Dostalova J, Illes A, Belly R, Perez-Ruixo JJ, Park YC, Palmer PA (2004) Phase III double-blind placebo-controlled study of farnesyl transferase inhibitor R115777 in patients with refractory advanced colorectal cancer. J Clin Oncol 22:3950–3957PubMedCrossRefGoogle Scholar
  16. 16.
    Van Cutsem E, van de Velde H, Karasek P, Oettle H, Vervenne WL, Szawlowski A, Schoffski P, Post S, Verslype C, Neumann H, Safran H, Humblet Y, Perez Ruixo J, Ma Y, Von Hoff D (2004) Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol 22:1430–1438PubMedCrossRefGoogle Scholar
  17. 17.
    Lancet JE, Gojo I, Gotlib J, Feldman EJ, Greer J, Liesveld JL, Bruzek LM, Morris L, Park Y, Adjei AA, Kaufmann SH, Garrett-Mayer E, Greenberg PL, Wright JJ, Karp JE (2007) A phase 2 study of the farnesyltransferase inhibitor tipifarnib in poor-risk and elderly patients with previously untreated acute myelogenous leukemia. Blood 109:1387–1394PubMedCrossRefGoogle Scholar
  18. 18.
    Harousseau JL, Lancet JE, Reiffers J, Lowenberg B, Thomas X, Huguet F, Fenaux P, Zhang S, Rackoff W, De Porre P, Stone R, Farnesyltransferase Inhibition Global Human Trials (FIGHT) Acute Myeloid Leukemia Study Group (2007) A phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 109:5151–5156PubMedCrossRefGoogle Scholar
  19. 19.
    Wiemer AJ, Hohl RJ, Wiemer DF (2009) The intermediate enzymes of isoprenoid metabolism as anticancer targets. Anticancer Agents Med Chem 9:526–542PubMedGoogle Scholar
  20. 20.
    Vogt A, Sun J, Qian Y, Hamilton AD, Sebti SM (1997) The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 272:27224–27229PubMedCrossRefGoogle Scholar
  21. 21.
    Kusama T, Mukai M, Tatsuta M, Matsumoto Y, Nakamura H, Inoue M (2003) Selective inhibition of cancer cell invasion by a geranylgeranyltransferase-I inhibitor. Clin Exp Metastasis 20:561–567PubMedCrossRefGoogle Scholar
  22. 22.
    Kazi A, Carie A, Blaskovich MA, Bucher C, Thai V, Moulder S, Peng H, Carrico D, Pusateri E, Pledger WJ, Berndt N, Hamilton A, Sebti SM (2009) Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: implications for breast cancer therapy. Mol Cell Biol 29:2254–2263PubMedCrossRefGoogle Scholar
  23. 23.
    Kusama T, Mukai M, Tatsuta M, Nakamura H, Inoue M (2006) Inhibition of transendothelial migration and invasion of human breast cancer cells by preventing geranylgeranylation of Rho. Int J Oncol 29:217–223PubMedGoogle Scholar
  24. 24.
    Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2001) Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15:1398–1407PubMedCrossRefGoogle Scholar
  25. 25.
    Coxon JP, Oades GM, Kirby RS, Colston KW (2004) Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int 94:164–170PubMedCrossRefGoogle Scholar
  26. 26.
    Shull LW, Wiemer AJ, Hohl RJ, Wiemer DF (2006) Synthesis and biological activity of isoprenoid bisphosphonates. Bioorg Med Chem 14:4130–4136PubMedCrossRefGoogle Scholar
  27. 27.
    Maalouf MA, Wiemer AJ, Kuder CH, Hohl RJ, Wiemer DF (2007) Synthesis of fluorescently tagged isoprenoid bisphosphonates that inhibit protein geranylgeranylation. Bioorg Med Chem 15:1959–1966PubMedCrossRefGoogle Scholar
  28. 28.
    Wiemer AJ, Tong H, Swanson KM, Hohl RJ (2007) Digeranyl bisphosphonate inhibits geranylgeranyl pyrophosphate synthase. Biochem Biophys Res Commun 353:921–925PubMedCrossRefGoogle Scholar
  29. 29.
    Wiemer AJ, Yu JS, Shull LW, Barney RJ, Wasko BM, Lamb KM, Hohl RJ, Wiemer DF (2008) Pivaloyloxymethyl-modified isoprenoid bisphosphonates display enhanced inhibition of cellular geranylgeranylation. Bioorg Med Chem 16:3652–3660PubMedCrossRefGoogle Scholar
  30. 30.
    Wiemer AJ, Yu JS, Lamb KM, Hohl RJ, Wiemer DF (2008) Mono- and dialkyl isoprenoid bisphosphonates as geranylgeranyl diphosphate synthase inhibitors. Bioorg Med Chem 16:390–399PubMedCrossRefGoogle Scholar
  31. 31.
    Dudakovic A, Wiemer AJ, Lamb KM, Vonnahme LA, Dietz SE, Hohl RJ (2008) Inhibition of geranylgeranyl diphosphate synthase induces apoptosis through multiple mechanisms and displays synergy with inhibition of other isoprenoid biosynthetic enzymes. J Pharmacol Exp Ther 324:1028–1036PubMedCrossRefGoogle Scholar
  32. 32.
    Tong H, Wiemer AJ, Neighbors JD, Hohl RJ (2008) Quantitative determination of farnesyl and geranylgeranyl diphosphate levels in mammalian tissue. Anal Biochem 378:138–143PubMedCrossRefGoogle Scholar
  33. 33.
    Tang Y, Olufemi L, Wang MT, Nie D (2008) Role of Rho GTPases in breast cancer. Front Biosci 13:759–776PubMedCrossRefGoogle Scholar
  34. 34.
    Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81:682–687PubMedCrossRefGoogle Scholar
  35. 35.
    Kleer CG, van Golen KL, Zhang Y, Wu ZF, Rubin MA, Merajver SD (2002) Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 160:579–584PubMedCrossRefGoogle Scholar
  36. 36.
    Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H, Harbeck N, Schmitt M, Lengyel E (2000) Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 19:3013–3020PubMedCrossRefGoogle Scholar
  37. 37.
    Zhang Y, Cao R, Yin F, Hudock MP, Guo RT, Krysiak K, Mukherjee S, Gao YG, Robinson H, Song Y, No JH, Bergan K, Leon A, Cass L, Goddard A, Chang TK, Lin FY, Van Beek E, Papapoulos S, Wang AH, Kubo T, Ochi M, Mukkamala D, Oldfield E (2009) Lipophilic bisphosphonates as dual farnesyl/geranylgeranyl diphosphate synthase inhibitors: an X-ray and NMR investigation. J Am Chem Soc 131:5153–5162PubMedCrossRefGoogle Scholar
  38. 38.
    Tong H, Holstein SA, Hohl RJ (2005) Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. Anal Biochem 336:51–59PubMedCrossRefGoogle Scholar
  39. 39.
    Davis PJ, Kosmacek EA, Sun Y, Ianzini F, Mackey MA (2007) The large-scale digital cell analysis system: an open system for nonperturbing live cell imaging. J Microsc 228:296–308PubMedCrossRefGoogle Scholar
  40. 40.
    Yang F, Mackey MA, Ianzini F, Gallardo G, Sonka M (2005) Cell segmentation, tracking, and mitosis detection using temporal context. Med Image Comput Comput Assist Interv 8:302–309PubMedGoogle Scholar
  41. 41.
    Ianzini F, Bresnahan L, Wang L, Anderson K, Mackey MA (2002) The Large Scale Digital Cell Analysis System and its use in the quantitative analysis of cell populations. The Second Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and BiologyGoogle Scholar
  42. 42.
    Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528PubMedCrossRefGoogle Scholar
  43. 43.
    Holstein SA, Tong H, Kuder CH, Hohl RJ (2009) Quantitative determination of geranyl diphosphate levels in cultured human cells. Lipids 44:1055–1062PubMedCrossRefGoogle Scholar
  44. 44.
    Waiczies S, Bendix I, Prozorovski T, Ratner M, Nazarenko I, Pfueller CF, Brandt AU, Herz J, Brocke S, Ullrich O, Zipp F (2007) Geranylgeranylation but not GTP loading determines rho migratory function in T cells. J Immunol 179:6024–6032PubMedGoogle Scholar
  45. 45.
    Lerner EC, Zhang TT, Knowles DB, Qian Y, Hamilton AD, Sebti SM (1997) Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15:1283–1288PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Amel Dudakovic
    • 1
  • Huaxiang Tong
    • 2
  • Raymond J. Hohl
    • 1
    • 2
  1. 1.Department of PharmacologyUniversity of IowaIowa CityUSA
  2. 2.Department of Internal MedicineUniversity of IowaIowa CityUSA

Personalised recommendations