Advertisement

Investigational New Drugs

, Volume 29, Issue 3, pp 424–433 | Cite as

Preclinical investigation of tolerance and antitumour activity of new fluorodeoxyglucose-coupled chlorambucil alkylating agents

  • Elisabeth Miot-Noirault
  • Bastien Reux
  • Eric Debiton
  • Jean-Claude Madelmont
  • Jean-Michel Chezal
  • Pascal Coudert
  • Valérie Weber
PRECLINICAL STUDIES

Summary

Our strategy is to increase drug accumulation in target tumour cells using specific “vectors” tailored to neoplastic tissue characteristics, which ideally are not found in healthy tissues. The aim of this work was to use 2-fluoro-2-deoxyglucose (FDG) as a drug carrier, in view of its well-known accumulation by most primary and disseminated human tumours. We had previously selected two FDG-cytotoxic conjugates of chlorambucil (CLB), i.e. compounds 21a and 40a, on the basis of their in vitro profiles. Here we investigated the antitumour profile and tolerance of these compounds in vitro and in vivo in two murine cell lines of solid tumours. In vitro, we found that micromolar concentrations of compounds 21a and 40a inhibited proliferation of B16F0 and CT-26 cell lines. Interestingly, compounds 21a and 40a were found to act at different levels in the cell cycle: S and subG1 accumulation for 21a and G2 accumulation for 40a. In vivo, a single-dose-finding study to select the Maximum Tolerated Dose (MTD) by the intraperitoneal route (IP) showed that the two peracetylated glucoconjugates of CLB were less toxic than CLB itself. When given to tumour-bearing mice (melanoma and colon carcinoma models), according to a “q4d × 3” schedule (i.e., three doses at 4-day intervals) both compounds demonstrated a promising antitumour activity, with Log Cell Kill (LCK) values higher than 1.3 in both B16F0 and CT-26 models. Hence compounds 21a and 40a are good candidates for further works to develop new highly active antineoplastic compounds.

Keywords

Antitumour activity Toxicity FDG conjugates Vectorization Glycolysis Solid tumours 

Notes

Acknowledgment

We thank Dr. Yves Communal (Centre Jean Perrin, Clermont Ferrand) for cell cycle analysis.

References

  1. 1.
    Juillerat-Jeanneret L, Schmitt F (2007) Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: looking for the grail. Med Res Rev 27:574–590PubMedCrossRefGoogle Scholar
  2. 2.
    Jang SH, Wientjes MG, Lu D, Au JL (2003) Drug delivery and transport to solid tumours. Pharm Res 20:1337–1350PubMedCrossRefGoogle Scholar
  3. 3.
    Bielawski K, Bielowska A (2008) Small-molecule based delivery systems for alkylating antineoplastic compounds. Chem Med Chem 3:536–542PubMedGoogle Scholar
  4. 4.
    Chezal JM, Papon J, Labarre P, Lartigue C, Galmier MJ, Decombat C, Chavignon O, Maublant J, Teulade JC, Madelmont JC, Moins N (2008) Evaluation of radiolabeled (hetero)aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy of melanoma. J Med Chem 51:3133–3144PubMedCrossRefGoogle Scholar
  5. 5.
    Rapp M, Giraud I, Maurizis JC, Madelmont JC (2003) Synthesis and pharmacokinetic profile of a quaternary ammonium derivative of chlorambucil, a potential anticancer drug for the chemotherapy of chondrosarcoma. Bioorg Med Chem 11:5007–5012PubMedCrossRefGoogle Scholar
  6. 6.
    Rapp M, Giraud I, Maurizis JC, Galmier MJ, Madelmont JC (2003) Synthesis and in vivo biodisposition of [14C]-quaternary ammonium-melphalan conjugate, a potential cartilage-targeted alkylating drug. Bioconjug Chem 14:500–506PubMedCrossRefGoogle Scholar
  7. 7.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899PubMedCrossRefGoogle Scholar
  8. 8.
    Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693PubMedCrossRefGoogle Scholar
  9. 9.
    Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O’shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808PubMedCrossRefGoogle Scholar
  10. 10.
    Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology (2004). Radiology 231:305–332PubMedCrossRefGoogle Scholar
  11. 11.
    Reux B, Weber V, Galmier MJ, Borel M, Madesclaire M, Madelmont JC, Debiton E, Coudert P (2008) Synthesis and cytotoxic properties of new fluorodeoxyglucose-coupled chlorambucil derivatives. Bioorg Med Chem 16:5004–5020PubMedCrossRefGoogle Scholar
  12. 12.
    Boyd MR (1995) The NCI in vitro anticancer drug discovery screen. Concept, implementation, and operation; Part 1, in vitro methods. In: Teicher B (ed) Anticancer drug development guide: preclinical screening, clinical trials and approval. Humana Press, Totowa, pp 23–42Google Scholar
  13. 13.
    O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426PubMedCrossRefGoogle Scholar
  14. 14.
    Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin D, Double J, Embleton J, Newell D, Raymond R, Stables J, Stephens T, Wallace J (1998) United Kingdom Coordinating Committee on Cancer Research (UKCCCR) guidelines for the welfare of animals in experimental neoplasia (2nd edition). Br J Cancer 77:1–10Google Scholar
  15. 15.
    Miot-Noirault E, Legault J, Cachin F, Mounetou E, Degoul F, Gaudreault RC, Moins N, Madelmont JC (2004) Antineoplastic potency of arylchloroethylurea derivatives in murine colon carcinoma. Invest New Drugs 22:369–378PubMedCrossRefGoogle Scholar
  16. 16.
    Bissery MC, Guenard D, Gueritte-Voegelein F, Lavelle F (1991) Experimental antitumour activity of Taxotere (RP 56976, NSC 628503), a taxol analogue. Cancer Res 51:4845–4852PubMedGoogle Scholar
  17. 17.
    Polin L, White K, Kushner J, Paluch J, Simpson C, Pugh S, Edelstein MK, Hazeldine S, Fontana J, LoRusso P, Horwitz JP, Corbett TH (2002) Preclinical efficacy evaluations of XK-469: Dose schedule, route and cross-resistance behaviour in tumourbearing mice. Invest New Drugs 20:13–22PubMedCrossRefGoogle Scholar
  18. 18.
    Rose WC, Wild R (2004) Therapeutic synergy of oral taxane BMS-275183 and cetuximab versus human tumour xenografts. Clin Cancer Res 10:7413–7417PubMedCrossRefGoogle Scholar
  19. 19.
    Beverly AT (1997) Anticancer drug development guide. Humana Press, TotowaGoogle Scholar
  20. 20.
    Hait WN (2009) Targeted cancer therapeutics. Cancer Res 69:1263–1267PubMedCrossRefGoogle Scholar
  21. 21.
    Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(suppl 2):S81–S91PubMedCrossRefGoogle Scholar
  22. 22.
    Warburg O (1931) The metabolism of tumours. Richard Smith, New York, pp 29–169Google Scholar
  23. 23.
    Maryanoff BE, Costanzo MJ, Nortey SO, Greco MN, Shank RP, Schupsky JJ, Ortegon MP, Vaught JL (1998) Structure-activity studies on anticonvulsivant sugar sulfamates related to topiramate. Enhanced potency with cyclic sulphate derivatives. J Med Chem 41:1315–1343PubMedCrossRefGoogle Scholar
  24. 24.
    Iglesias-Guerra F, Candela JI, Banco E, Alcudia F, Vega-Perez JM (2002) Alkylating agents from sugars: synthesis of chlorambucil derivatives carriers by chiral glycosyl glycerols derived from D-glucosamine. Chirality 14:199–203PubMedCrossRefGoogle Scholar
  25. 25.
    Cantuaria G, Magalhaes A, Angioli R, Mendez L, Mirhashemi R, Wang J, Wang P, Penalver M, Averette H, Braunschweiger P (2000) Antitumour activity of a novel glycol-nitric oxide conjugate in ovarian carcinoma. Cancer 88:381–388PubMedCrossRefGoogle Scholar
  26. 26.
    Pohl J, Bertram B, Hilgard P, Nowroussian MR, Stuben J, Wiessler M (1995) D-19575-a sugar-linked isophosphoramide mustard derivative exploiting transmembrane glucose transport. Cancer Chemother Pharmacol 35:364–370PubMedCrossRefGoogle Scholar
  27. 27.
    Seker H, Bertram B, Burkle A, Kaina B, Pohl J, Koepsell H, Wiessler M (2000) Mechanistic aspects of the cytotoxic activity of glufosfamide, a new tumour therapeutic agent. Br J Cancer 82:629–634PubMedCrossRefGoogle Scholar
  28. 28.
    Sorg BL, Hull WE, Kliem HC, Mier W, Wiessler M (2005) Synthesis and NMR characterization of hydroxyurea and mesylglycol glycoconjugates as drug candidates for targeted cancer chemotherapy. Carbohydr Res 340:181–189PubMedCrossRefGoogle Scholar
  29. 29.
    Briasoulis E, Pavlidis N, Terret C, Bauer J, Fiedler W, Schöffski P, Raoul JL, Hess D, Selvais R, Lacombe D, Bachmann P, Fumoleau P (2003) Glufosfamide administered using a 1-hour infusion given as first-line treatment for advanced pancreatic cancer. A phase II trial of the EORTC-new drug development group. Eur J Cancer 39:2334–2340PubMedCrossRefGoogle Scholar
  30. 30.
    Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332PubMedCrossRefGoogle Scholar
  31. 31.
    Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808PubMedCrossRefGoogle Scholar
  32. 32.
    Matsumoto T, Fujimoto-Ouchi K, Tamura S, Tanaka Y, Ishitsuka H (1999) Tumour inoculation site-dependent induction of cachexia in mice bearing colon 26 carcinoma. Br J Cancer 79:764–769PubMedCrossRefGoogle Scholar
  33. 33.
    Garbe C, Eigentler TK (2007) Diagnosis and treatment of cutaneous melanoma: state of the art 2006 (2007). Melanoma Res 17:117–127PubMedCrossRefGoogle Scholar
  34. 34.
    Miller AJ, Mihm MC (2006) Melanoma. N Engl J Med 355:51–65PubMedCrossRefGoogle Scholar
  35. 35.
    Tarhini AA, Agarwala SS (2006) Cutaneous melanoma: available therapy for metastatic disease. Dermatol Ther 19:19–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Elisabeth Miot-Noirault
    • 1
    • 2
    • 3
  • Bastien Reux
    • 1
    • 2
  • Eric Debiton
    • 1
    • 2
  • Jean-Claude Madelmont
    • 1
    • 2
  • Jean-Michel Chezal
    • 1
    • 2
  • Pascal Coudert
    • 1
    • 2
  • Valérie Weber
    • 1
    • 2
  1. 1.Clermont UniversitéUniversité d’AuvergneClermont-FerrandFrance
  2. 2.Centre Jean-PerrinClermont-FerrandFrance
  3. 3.UMR 990 INSERMClermont Ferrand CédexFrance

Personalised recommendations