Investigational New Drugs

, Volume 28, Issue 6, pp 766–782

Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells

  • Pay-Chin Leow
  • Quan Tian
  • Zhan-Yuin Ong
  • Zheng Yang
  • Pui-Lai Rachel Ee
PRECLINICAL STUDIES

Summary

Aberrant activation of the Wnt/β-catenin signaling pathway promotes osteosarcoma tumorigenesis and metastasis. In this study, we tested the hypothesis that osteosarcoma progression may be delayed by disrupting the Wnt/β-catenin pathway using small molecule inhibitors such as curcumin and PKF118-310. Effective inhibitions of the Wnt/β-catenin pathway by curcumin and PKF118-310 in osteosarcoma cells were shown by the suppression of both intrinsic and activated β-catenin/Tcf transcriptional activities using luciferase reporter assays. Western blot analysis revealed that there was no change in the amount of cytosolic β-catenin, although nuclear β-catenin was markedly reduced by treatment with either compounds. We next performed wound healing and Matrigel invasion assays and observed a dose-dependent decrease in osteosarcoma cell migration and invasion with curcumin and PKF118-310 treatment. Overexpression of the wild-type β-catenin plasmid in osteosarcoma cells resulted in enhanced cell invasiveness but this effect was significantly overcome by curcumin. Gelatin zymography and Western blotting showed that reduced cell invasion with curcumin and PKF118-310 treatment correlated with the activity and protein level of matrix metalloproteinase-9 under conditions of intrinsic or extrinsic Wnt/β-catenin activation. Using cell apoptosis assay and cell cycle analysis, we further showed that the anti-proliferative effect of PKF118-310 is attributed to PKF118-310-induced apoptosis and G2/M phase arrest. Lastly, we observed that these anti-cancer effects correlated with the decreased expression of cyclin D1, c-Myc and survivin. Our findings strongly suggest that curcumin and PKF118-310 have great therapeutic potential for the treatment of osteosarcoma.

Keywords

PKF118-310 Curcumin Osteosarcoma Wnt signaling Proliferation Invasion 

References

  1. 1.
    Arndt CA, Crist WM (1999) Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341:342–352CrossRefPubMedGoogle Scholar
  2. 2.
    Petrilli AS, de Camargo B, Filho VO, Bruniera P, Brunetto AL, Jesus-Garcia R, Camargo OP, Pena W, Pericles P, Davi A, Prospero JD et al (2006) Results of the Brazilian osteosarcoma treatment group studies III and IV: prognostic factors and impact on survival. J Clin Oncol 24:1161–1168CrossRefPubMedGoogle Scholar
  3. 3.
    Bielack SS, Kempf-Bielack B, Delling G, Exner GU, Flege S, Helmke K, Kotz R, Salzer-Kuntschik M, Werner M, Winkelmann W, Zoubek A et al (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1, 702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J Clin Oncol 20:776–790CrossRefPubMedGoogle Scholar
  4. 4.
    Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851PubMedGoogle Scholar
  5. 5.
    Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426CrossRefPubMedGoogle Scholar
  6. 6.
    He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512CrossRefPubMedGoogle Scholar
  7. 7.
    Marchenko ND, Marchenko GN, Weinreb RN, Lindsey JD, Kyshtoobayeva A, Crawford HC, Strongin AY (2004) Beta-catenin regulates the gene of MMP-26, a novel metalloproteinase expressed both in carcinomas and normal epithelial cells. Int J Biochem Cell Biol 36:942–956CrossRefPubMedGoogle Scholar
  8. 8.
    Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM (1999) The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891CrossRefPubMedGoogle Scholar
  9. 9.
    Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y (2002) Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21:5861–5867CrossRefPubMedGoogle Scholar
  10. 10.
    Hiendlmeyer E, Regus S, Wassermann S, Hlubek F, Haynl A, Dimmler A, Koch C, Knoll C, van Beest M, Reuning U, Brabletz T et al (2004) Beta-catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Res 64:1209–1214CrossRefPubMedGoogle Scholar
  11. 11.
    Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC (2003) Survivin and molecular pathogenesis of colorectal cancer. Lancet 362:205–209CrossRefPubMedGoogle Scholar
  12. 12.
    Hoang BH, Kubo T, Healey JH, Sowers R, Mazza B, Yang R, Huvos AG, Meyers PA, Gorlick R (2004) Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. Int J Cancer 109:106–111CrossRefPubMedGoogle Scholar
  13. 13.
    Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PF, Simmons PJ, Dawid IB et al (2009) Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 119:837–851CrossRefPubMedGoogle Scholar
  14. 14.
    Mandal D, Srivastava A, Mahlum E, Desai D, Maran A, Yaszemski M, Jalal SM, Gitelis S, Bertoni F, Damron T, Irwin R et al (2007) Severe suppression of Frzb/sFRP3 transcription in osteogenic sarcoma. Gene 386:131–138CrossRefPubMedGoogle Scholar
  15. 15.
    Haydon RC, Deyrup A, Ishikawa A, Heck R, Jiang W, Zhou L, Feng T, King D, Cheng H, Breyer B, Peabody T et al (2002) Cytoplasmic and/or nuclear accumulation of the beta-catenin protein is a frequent event in human osteosarcoma. Int J Cancer 102:338–342CrossRefPubMedGoogle Scholar
  16. 16.
    Iwao K, Miyoshi Y, Nawa G, Yoshikawa H, Ochi T, Nakamura Y (1999) Frequent beta-catenin abnormalities in bone and soft-tissue tumors. Jpn J Cancer Res 90:205–209PubMedGoogle Scholar
  17. 17.
    Chen K, Fallen S, Abaan HO, Hayran M, Gonzalez C, Wodajo F, MacDonald T, Toretsky JA, Uren A (2008) Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatr Blood Cancer 51:349–355CrossRefPubMedGoogle Scholar
  18. 18.
    Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R, Holcombe RF, Hoang BH (2007) Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 25:964–971CrossRefPubMedGoogle Scholar
  19. 19.
    Guo Y, Rubin EM, Xie J, Zi X, Hoang BH (2008) Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model. Clin Orthop Relat Res 466:2039–2045CrossRefPubMedGoogle Scholar
  20. 20.
    Hoang BH, Kubo T, Healey JH, Yang R, Nathan SS, Kolb EA, Mazza B, Meyers PA, Gorlick R (2004) Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 64:2734–2739CrossRefPubMedGoogle Scholar
  21. 21.
    Park CH, Hahm ER, Park S, Kim HK, Yang CH (2005) The inhibitory mechanism of curcumin and its derivative against beta-catenin/Tcf signaling. FEBS Lett 579:2965–2971CrossRefPubMedGoogle Scholar
  22. 22.
    Ryu MJ, Cho M, Song JY, Yun YS, Choi IW, Kim DE, Park BS, Oh S (2008) Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochem Biophys Res Commun 377:1304–1308CrossRefPubMedGoogle Scholar
  23. 23.
    Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5:91–102CrossRefPubMedGoogle Scholar
  24. 24.
    Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790CrossRefPubMedGoogle Scholar
  25. 25.
    Ip YC, Cheung ST, Lee YT, Ho JC, Fan ST (2007) Inhibition of hepatocellular carcinoma invasion by suppression of claudin-10 in HLE cells. Mol Cancer Ther 6:2858–2867CrossRefPubMedGoogle Scholar
  26. 26.
    Cheng YY, Huang L, Lee KM, Li K, Kumta SM (2004) Alendronate regulates cell invasion and MMP-2 secretion in human osteosarcoma cell lines. Pediatr Blood Cancer 42:410–415CrossRefPubMedGoogle Scholar
  27. 27.
    Cho HJ, Lee TS, Park JB, Park KK, Choe JY, Sin DI, Park YY, Moon YS, Lee KG, Yeo JH, Han SM et al (2007) Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression. J Biochem Mol Biol 40:1069–1076PubMedGoogle Scholar
  28. 28.
    Dass CR, Ek ET, Contreras KG, Choong PF (2006) A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin Exp Metastasis 23:367–380CrossRefPubMedGoogle Scholar
  29. 29.
    Lu W, Tinsley HN, Keeton A, Qu Z, Piazza GA, Li Y (2009) Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation. Eur J Pharmacol 602:8–14CrossRefPubMedGoogle Scholar
  30. 30.
    Jaiswal AS, Marlow BP, Gupta N, Narayan S (2002) Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene 21:8414–8427CrossRefPubMedGoogle Scholar
  31. 31.
    Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, Ryan XP, Vonica CA, Brivanlou A, Dajani R, Crovace C et al (2003) GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10:1255–1266CrossRefPubMedGoogle Scholar
  32. 32.
    Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D et al (2000) Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol 7:793–803CrossRefPubMedGoogle Scholar
  33. 33.
    Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149PubMedGoogle Scholar
  34. 34.
    Bjornland K, Flatmark K, Pettersen S, Aaasen AO, Fodstad O, Maelandsmo GM (2005) Matrix metalloproteinases participate in osteosarcoma invasion. J Surg Res 127:151–156CrossRefPubMedGoogle Scholar
  35. 35.
    Uchibori M, Nishida Y, Nagasaka T, Yamada Y, Nakanishi K, Ishiguro N (2006) Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma. Int J Oncol 28:33–42PubMedGoogle Scholar
  36. 36.
    Foukas AF, Deshmukh NS, Grimer RJ, Mangham DC, Mangos EG, Taylor S (2002) Stage-IIB osteosarcomas around the knee. A study of MMP-9 in surviving tumour cells. J Bone Joint Surg Br 84:706–711CrossRefPubMedGoogle Scholar
  37. 37.
    Guo Y, Xie J, Rubin E, Tang YX, Lin F, Zi X, Hoang BH (2008) Frzb, a secreted Wnt antagonist, decreases growth and invasiveness of fibrosarcoma cells associated with inhibition of Met signaling. Cancer Res 68:3350–3360CrossRefPubMedGoogle Scholar
  38. 38.
    Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108:153–164CrossRefPubMedGoogle Scholar
  39. 39.
    Giodini A, Kallio MJ, Wall NR, Gorbsky GJ, Tognin S, Marchisio PC, Symons M, Altieri DC (2002) Regulation of microtubule stability and mitotic progression by survivin. Cancer Res 62:2462–2467PubMedGoogle Scholar
  40. 40.
    Beardmore VA, Ahonen LJ, Gorbsky GJ, Kallio MJ (2004) Survivin dynamics increases at centromeres during G2/M phase transition and is regulated by microtubule-attachment and Aurora B kinase activity. J Cell Sci 117:4033–4042CrossRefPubMedGoogle Scholar
  41. 41.
    Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584CrossRefPubMedGoogle Scholar
  42. 42.
    Marchenko GN, Marchenko ND, Leng J, Strongin AY (2002) Promoter characterization of the novel human matrix metalloproteinase-26 gene: regulation by the T-cell factor-4 implies specific expression of the gene in cancer cells of epithelial origin. Biochem J 363:253–262CrossRefPubMedGoogle Scholar
  43. 43.
    Lowy AM, Clements WM, Bishop J, Kong L, Bonney T, Sisco K, Aronow B, Fenoglio-Preiser C, Groden J (2006) beta-Catenin/Wnt signaling regulates expression of the membrane type 3 matrix metalloproteinase in gastric cancer. Cancer Res 66:4734–4741CrossRefPubMedGoogle Scholar
  44. 44.
    Zi X, Guo Y, Simoneau AR, Hope C, Xie J, Holcombe RF, Hoang BH (2005) Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Res 65:9762–9770CrossRefPubMedGoogle Scholar
  45. 45.
    Chen HW, Lee JY, Huang JY, Wang CC, Chen WJ, Su SF, Huang CW, Ho CC, Chen JJ, Tsai MF, Yu SL et al (2008) Curcumin inhibits lung cancer cell invasion and metastasis through the tumor suppressor HLJ1. Cancer Res 68:7428–7438CrossRefPubMedGoogle Scholar
  46. 46.
    Osaka E, Suzuki T, Osaka S, Yoshida Y, Sugita H, Asami S, Tabata K, Hemmi A, Sugitani M, Nemoto N, Ryu J (2006) Survivin as a prognostic factor for osteosarcoma patients. Acta Histochem Cytochem 39:95–100CrossRefPubMedGoogle Scholar
  47. 47.
    Osaka E, Suzuki T, Osaka S, Yoshida Y, Sugita H, Asami S, Tabata K, Sugitani M, Nemoto N, Ryu J (2007) Survivin expression levels as independent predictors of survival for osteosarcoma patients. J Orthop Res 25:116–121CrossRefPubMedGoogle Scholar
  48. 48.
    Trieb K, Lehner R, Stulnig T, Sulzbacher I, Shroyer KR (2003) Survivin expression in human osteosarcoma is a marker for survival. Eur J Surg Oncol 29:379–382CrossRefPubMedGoogle Scholar
  49. 49.
    Wang W, Luo H, Wang A (2006) Expression of survivin and correlation with PCNA in osteosarcoma. J Surg Oncol 93:578–584CrossRefPubMedGoogle Scholar
  50. 50.
    Chiou SK, Jones MK, Tarnawski AS (2003) Survivin - an anti-apoptosis protein: its biological roles and implications for cancer and beyond. Med Sci Monit 9:PI25–P129PubMedGoogle Scholar
  51. 51.
    Pompetti F, Rizzo P, Simon RM, Freidlin B, Mew DJ, Pass HI, Picci P, Levine AS, Carbone M (1996) Oncogene alterations in primary, recurrent, and metastatic human bone tumors. J Cell Biochem 63:37–50CrossRefPubMedGoogle Scholar
  52. 52.
    Gamberi G, Benassi MS, Bohling T, Ragazzini P, Molendini L, Sollazzo MR, Pompetti F, Merli M, Magagnoli G, Balladelli A, Picci P (1998) C-myc and c-fos in human osteosarcoma: prognostic value of mRNA and protein expression. Oncology 55:556–563CrossRefPubMedGoogle Scholar
  53. 53.
    Wu X, Chen ZR, Zhang GJ (2004) Apoptosis-related gene expression and its clinical significance of human osteosarcoma. Zhonghua Zhong Liu Za Zhi 26:678–681PubMedGoogle Scholar
  54. 54.
    Zucchini C, Rocchi A, Manara MC, De Sanctis P, Capanni C, Bianchini M, Carinci P, Scotlandi K, Valvassori L (2008) Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines. Int J Oncol 32:17–31PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pay-Chin Leow
    • 1
  • Quan Tian
    • 1
  • Zhan-Yuin Ong
    • 1
  • Zheng Yang
    • 2
    • 3
  • Pui-Lai Rachel Ee
    • 1
  1. 1.Department of Pharmacy, Faculty of ScienceNational University of SingaporeSingaporeSingapore
  2. 2.Department of Orthopedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  3. 3.Department of Oral Maxillo-Facial Surgery, Faculty of DentistryNational University of SingaporeSingaporeSingapore

Personalised recommendations