Investigational New Drugs

, Volume 28, Issue 2, pp 115–123 | Cite as

A metabolically stable analogue of anandamide, Met-F-AEA, inhibits human thyroid carcinoma cell lines by activation of apoptosis

  • Rosanna Cozzolino
  • Gaetano Calì
  • Maurizio Bifulco
  • Paolo Laccetti
PRECLINICAL STUDIES

Summary

The active components of Cannabis sativa and their derivatives produce a wide spectrum of effects, some of which may have clinical application. The discovery of specific cannabinoid receptors and a family of endogenous ligands of those receptors has attracted much attention to cannabinoids as agents capable of controlling the decision of cells to survive or die. We analysed the effects exerted by 2-methyl-2′-F-anandamide (Met-F-AEA), a metabolically stable analogue of anandamide, and observed a growth inhibition in cell lines derived from thyroid carcinomas. Growth inhibition was associated with a high level of CB1 receptor expression, suggesting that the cytotoxic effect is due to interaction with the CB1 receptor. This phenomenon was associated with activation of the protein, p53, an increased apoptotic rate, and expression of p21CIP1/WAF1. This study provides new insights into the mechanism of Met-F-AEA action, and could have significance in providing a basis for the management of thyroid carcinoma.

Keywords

Apoptosis CB1 receptor Met-F-AEA Human thyroid carcinoma 

References

  1. 1.
    Pertwee RG (1997) Pharmacology of cannabinoid CB1 And CB2 receptors. Pharmacol Ther 74:129–180CrossRefPubMedGoogle Scholar
  2. 2.
    Rueda D, Navarro B, Martinez-Serrano A, Guzman M, Galve-Roperh I (2002) The endocannabinoid anandamide inhibits neuronal progenitor cell differentiation through attenuation of the Rap1/B-Raf/ERK pathway. J Biol Chem 277:46645–46650, doi:10.1074/jbc.M206590200 CrossRefPubMedGoogle Scholar
  3. 3.
    Sanchez C, de Ceballos ML, Del Pulgar TG et al (2001) Inhibition of glioma growth in vivo by selective activation of th CB(2) cannabinoid receptor. Cancer Res 61:5784–5789PubMedGoogle Scholar
  4. 4.
    Casanova ML, Blazquez C, Martinez-Palacio J, Villanueva C, Fernandez-Acenero MJ, Huffman JW, Jorcano JL, Guzman M (2003) Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 111:43–50PubMedGoogle Scholar
  5. 5.
    Guzman M, Sanchez C, Galve-Roperh I (2001) Control of the cell survival/death decision by cannabinoids. Mol Med 78(11):613–625, doi:10.1007/s001090000177 CrossRefGoogle Scholar
  6. 6.
    Patsos HA, Hicks DJ, Greenhough A, Williams AC, Paraskeva C (2005) Cannabinoids and cancer: potential for colorectal cancer therapy. Biochem Soc Trans 33:712–714, doi:10.1042/BST0330667 CrossRefPubMedGoogle Scholar
  7. 7.
    Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G, Caput D (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350(2–3):240–244, doi:10.1016/0014-5793(94)00773-X CrossRefPubMedGoogle Scholar
  8. 8.
    Rinaldi-Carmona M, Barth F, Millan J, Derocq JM, Casellas P, Congy C, Oustric D, Sarran M, Bouaboula M, Calandra B, Portier M, Shire D, Breliere JC, Le Fur GL (1998) SR 144528, the first potent and selective antagonist of the CB2 cannabinoid receptor. J Pharmacol Exp Ther 284(2):644–650PubMedGoogle Scholar
  9. 9.
    Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G, Gibson D, Mandelbaum A, Etinger A, Mechoulam R (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258(5090):1882–1884, doi:10.1126/science.1470919 CrossRefGoogle Scholar
  10. 10.
    Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almog S, Martin BR, Compton DR (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50(1):83–90, doi:10.1016/0006-2952(95)00109-D CrossRefPubMedGoogle Scholar
  11. 11.
    Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) Related 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215(1):89–97, doi:10.1006/bbrc.1995.2437 CrossRefPubMedGoogle Scholar
  12. 12.
    Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99(12):8400–8405, doi:10.1073/pnas.122196999 CrossRefPubMedGoogle Scholar
  13. 13.
    Melck D, De Petrocellis L, Orlando P, Bisogno T, Laezza C, Bifulco M, Di Marzo V (2000) Suppression of Nerve Growth Factor Trk Receptors and Prolactin Receptors by Endocannabinoids Leads to Inhibition of Human Breast and prostate Cancer cell proliferation. Endocrinology 141(1):118–126, doi:10.1210/en.141.1.118 CrossRefPubMedGoogle Scholar
  14. 14.
    De Petrocellis L, Melck D, Palmisano A, Bisogno T, Laezza C, Bifulco M, Di Marzo V (1998) The endogenous cannabinoid anandamide inhibits huma breast cancer cell proliferation. Proc Natl Acad Sci USA 95:8375–8380, doi:10.1073/pnas.95.14.8375 CrossRefPubMedGoogle Scholar
  15. 15.
    Sanchez C, Galve-Roperh I, Canova C, Brachet P, Guzman M (1998) Delta9-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Lett 436(1):6–10, doi:10.1016/S0014-5793(98)01085-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Sarker KP, Obara S, Nakata M, Kitajima I, Maruyama I (2000) Anandamide induces apoptosis of PC-12 cells: involvement of superoxide and caspase-3. FEBS Lett 472(1):39–44, doi:10.1016/S0014-5793(00)01425-3 CrossRefPubMedGoogle Scholar
  17. 17.
    Maccarone M, Lorenzon T, Bari M, Melino G, Finazzi-Agrò A (2000) Anandamide induces apoptosis in human cells via vanilloid receptors. Evidence for a protective role of cannabinoid receptor. J Biol Chem 275:31938–31945, doi:10.1074/jbc.M005722200 CrossRefGoogle Scholar
  18. 18.
    Izzo AA, Coutts AA (2005) Cannabinoids and the digestive tract. Handb Exp Pharmacol 168:573–598, doi:10.1007/3-540-26573-2_19 CrossRefPubMedGoogle Scholar
  19. 19.
    Chan GC, Hinds TR, Impey S, Storm DR (1998) Hippocampal neurotoxicity of Delta9-tetrahydrocannabinol. J Neurosci 18(14):5322–5332PubMedGoogle Scholar
  20. 20.
    Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoural action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6(3):255–256, doi:10.1038/73088 CrossRefGoogle Scholar
  21. 21.
    Bifulco M, Laezza C, Portella G, Vitale M, Orlando P, De Petrocellis L, Di Marzo V (2001) Control by the endogenous cannabinoid system of ras oncogene-dependent tumour growth. FASEB J 15(14):2745–2747PubMedGoogle Scholar
  22. 22.
    Fagin JA, Matscio K, Karmakar A, Chen DL, Tang SH, Koeffer PH (1993) High prevalence of mutation of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 91:179–184, doi:10.1172/JCI116168 CrossRefPubMedGoogle Scholar
  23. 23.
    Portella G, Pacelli R, Libertini S, Cella L, Vecchio G, Salvatore M, Fusco A (2003) ONYX an E1B Gene-Defective Adenovirus, Induces Cell Death in Human Anaplastic Thyroid Carcinoma Cell Lines. J Clin Endocrinol Metab 88(10):5027–5032CrossRefPubMedGoogle Scholar
  24. 24.
    Motti ML, Califano D, Baldassarre G, Celetti A, Merolla F, Forzati F, Napoletano M, Tavernise B, Fusco A, Biglietto G (2005) Reduced E-cadherin expression contributes to the loss of 27Kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas. Carcinogenesis 26(6):1021–1024, doi:10.1093/carcin/bgi050 CrossRefPubMedGoogle Scholar
  25. 25.
    Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89:271–277, doi:10.1016/0022-1759(86)90368-6 CrossRefPubMedGoogle Scholar
  26. 26.
    Stoscheck CM (1990) Quantitation of Protein. Methods Enzymol 182:50–69, doi:10.1016/0076-6879(90)82008-P CrossRefPubMedGoogle Scholar
  27. 27.
    Spalletti-Cernia D, Sorrentino R, Di Gaetano S, Arciello A, Garbi C, Piccoli R, D’Alessio G, Vecchio G, Laccetti P, Santoro M (2003) Antineoplastic ribonucleases selectively kill thyroid carcinoma cells via caspase-mediated induction of apoptosis. J Clin Endocrinol Metab 88(6):2900–2907, doi:10.1210/jc.2002-020373 CrossRefPubMedGoogle Scholar
  28. 28.
    Yakovlev AG, Di Giovanni S, Wang G, Liu W, Stoica B, Faden AI (2004) BOK and NOXA Are Essential Mediators of p53-dependent Apoptosis. J Biol Chem 279:28367–28374, doi:10.1074/jbc.M313526200 CrossRefPubMedGoogle Scholar
  29. 29.
    Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber L (2002) The Course of Etoposide-induced Apoptosis from Damage to DNA and p53 Activation to Mitochondrial Release of Cytochrome c. J Biol Chem 277:16547–16552, doi:10.1074/jbc.M110629200 CrossRefPubMedGoogle Scholar
  30. 30.
    Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163, doi:10.1101/gad.9.10.1149 CrossRefPubMedGoogle Scholar
  31. 31.
    Di Gennaro E, Barbarino M, Bruzzese F, De Lorenzo S, Canaglia M, Abruzzese A, Avallone A, Comella P, Caponigro F, Pepe S, Budillon A (2003) Critical role of both p27KIP1 and p21CIP1/WAF1 in the antiproliferative effect of ZD1839 (‘Iressa’), an epidermal growth factor receptor tyrosine kinase inhibitor, in head and neck squamous carcinoma cells. J Cell Physiol 195(1):139–150, doi:10.1002/jcp.10239 CrossRefPubMedGoogle Scholar
  32. 32.
    Grana X, Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (cdks) growth suppressor gene and cyclin-dependent kinase inhibitor (cdki). Oncogene 11:211–219PubMedGoogle Scholar
  33. 33.
    Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Terce F (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60(5):1426–1433PubMedGoogle Scholar
  34. 34.
    Sorrentino R, Libertini S, Pallante PL, Troncone G, Palombini L, Bavetsias V, Spalletti-Cernia D, Laccetti P, Linardopoulos S, Chieffi P, Fusco A, Portella G (2005) Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab 90(2):928–935, doi:10.1210/jc.2004-1518 CrossRefPubMedGoogle Scholar
  35. 35.
    Hedinger C, Williams ED, Sobin LH (1989) The WHO histological classification of thyroid tumours: a commentary on the second edition. Cancer 63(5):908–911, doi:10.1002/1097-0142(19890301)63:5<908::AID-CNCR2820630520>3.0.CO;2-I CrossRefPubMedGoogle Scholar
  36. 36.
    Giuffrida D, Gharib H (2000) Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol 11(9):1083–1089, doi:10.1023/A:1008322002520 CrossRefPubMedGoogle Scholar
  37. 37.
    Wynford-Thomas D (1997) Origin and progression of thyroid epithelial tumours: cellular and molecular mechanisms. Horm Res 47(4–6):145–157, doi:10.1159/000185458 CrossRefPubMedGoogle Scholar
  38. 38.
    Ain KB (1999) Anaplastic thyroid carcinoma: a therapeutic challenge. Semin Surg Oncol 16:64–69, doi:10.1002/(SICI)1098-2388(199901/02)16:1<64::AID-SSU10>3.0.CO;2-U CrossRefPubMedGoogle Scholar
  39. 39.
    Bifulco M, Laezza C, Pisanti S, Gazzero P (2006) Cannabinoids and cancer: pros and cons of an antitumour strategy. Br J Pharmacol 148:123–135, doi:10.1038/sj.bjp.0706632 CrossRefPubMedGoogle Scholar
  40. 40.
    Caffarel MM, Sarrio D, Palacios J, Guzman M, Sanchez C (2006) Δ9-Tetrahydrocannabinol Inhibits Cell Cycle Progression in Human Breast Cancer Cells through Cdc2 Reglation. Cancer Res 66(13):6615–6621, doi:10.1158/0008-5472.CAN-05-4566 CrossRefPubMedGoogle Scholar
  41. 41.
    Kaplan BL, Ouyang Y, Herring A, Yea SS, Razdan R, Kaminski NE (2005) Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2’′-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide. Toxicol Appl Pharmacol 205(2):107–115, doi:10.1016/j.taap.2004.09.013 CrossRefPubMedGoogle Scholar
  42. 42.
    Nigg EA (1995) Cyclin-dependent protein kinases: Key regulators of eukaryotic cell cycle. Bioessays 17:471–480, doi:10.1002/bies.950170603 CrossRefPubMedGoogle Scholar
  43. 43.
    Sherr CJM (2000) The Pezcoller lecture: Cancer cell cycle revisited. Cancer Res 60:3689–3695PubMedGoogle Scholar
  44. 44.
    Sherr CJM, Roberts JM (1999) CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512, doi:10.1101/gad.13.12.1501 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rosanna Cozzolino
    • 1
  • Gaetano Calì
    • 2
  • Maurizio Bifulco
    • 3
  • Paolo Laccetti
    • 1
  1. 1.Department of Structural and Functional BiologyUniversity of Naples “Federico II”NaplesItaly
  2. 2.CNR-IEOS c/o Department of Cellular and Molecular Biology and Pathology ‘L. Califano’University of Naples ‘Federico II’NaplesItaly
  3. 3.Department of PharmacologyUniversity of SalernoFiscianoItaly

Personalised recommendations