Investigational New Drugs

, Volume 28, Issue 1, pp 35–48 | Cite as

A novel DNA intercalator, butylamino-pyrimido[4′,5′:4,5]selenolo(2,3-b)quinoline, induces cell cycle arrest and apoptosis in leukemic cells

  • M. S. Shahabuddin
  • Mridula Nambiar
  • Bibha Choudhary
  • Gopal M. Advirao
  • Sathees C. RaghavanEmail author


DNA intercalators are one of the most commonly used chemotherapeutic agents. Novel intercalating compounds of pyrimido[4′,5′:4,5]selenolo(2,3-b)quinoline series having a butylamino or piperazino group at fourth position (BPSQ and PPSQ, respectively) are studied. Our results showed that BPSQ induced cytotoxicity whereas PPSQ was cytostatic. The cytotoxicity induced by BPSQ was concentration- and time-dependent. Cell cycle analysis and tritiated thymidine assay revealed that BPSQ affects the cell cycle progression by arresting at S phase. The absence of p-histone H3 and reduction in the levels of PCNA in the cells treated with BPSQ further confirmed the cell cycle arrest. Further, annexin V staining, DNA fragmentation, nuclear condensation and changes in the expression levels of BCL2/BAD confirmed the activation of apoptosis. Activation of caspase 8 and lack of cleavage of caspase 9, caspase 3 and PARP suggest the possibility of BPSQ triggering extrinsic pathway for induction of apoptosis, which is discussed. Hence, we have identified a novel compound which would have clinical relevance in cancer chemotherapeutics.


Chemotherapy Double-strand breaks Cytotoxicity DNA damage Anticancer drug 



We thank Prof. Ambeker SY and members of the SCR laboratory for discussions and help. This work was supported by Lady Tata Memorial Trust international award for leukemia research, London; grants from DBT, India (BT/PRS129/GBD/27/7/2006), and IISc start up grant for SCR. We also thank Dr. Raghavan Varadarajan for financial assistance. SMS is supported by DBT postdoctoral fellowship from DBT, India. MN is supported by senior research fellowship from CSIR, India.

Conflict of interest statement

Authors disclose that there is no conflict of interest.


  1. 1.
    Kirsch IR (1993) The causes and consequences of chromosomal translocations. CRC, Boca RatonGoogle Scholar
  2. 2.
    Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochim Biophys Acta 1786:139–152PubMedGoogle Scholar
  3. 3.
    Raghavan SC, Lieber MR (2007) DNA structure and human diseases. Front Biosci 12:4402–4408. doi: 10.2741/2397 CrossRefPubMedGoogle Scholar
  4. 4.
    Raghavan SC et al (2004) A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 428(6978):88–93. doi: 10.1038/nature02355 CrossRefPubMedGoogle Scholar
  5. 5.
    Raghavan SC, Kirsch IR, Lieber MR (2001) Analysis of the V(D)J recombination efficiency at lymphoid chromosomal translocation breakpoints. J Biol Chem 276(31):29126–29133. doi: 10.1074/jbc.M103797200 CrossRefPubMedGoogle Scholar
  6. 6.
    Rowley JD (2001) Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 1:245–250. doi: 10.1038/35106108 CrossRefPubMedGoogle Scholar
  7. 7.
    Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9:2215–2235. doi: 10.1016/S0968-0896(01)00262-0 CrossRefPubMedGoogle Scholar
  8. 8.
    Thurston DE (1999) Nucleic acid targeting: therapeutic strategies for the 21st century. Br J Cancer 80:65–85PubMedGoogle Scholar
  9. 9.
    Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200. doi: 10.1038/nrc749 CrossRefPubMedGoogle Scholar
  10. 10.
    Viglasky V, Danko P (2007) Intercalators: contra cruciform extrusion in DNA. Anal Biochem 360(1):7–13. doi: 10.1016/j.ab.2006.10.023 CrossRefPubMedGoogle Scholar
  11. 11.
    Berman HM, Young PR (1981) The interaction of intercalating drugs with nucleic acids. Annu Rev Biophys Bioeng 10:87–114. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  12. 12.
    Wilson WD, Jones RL (1981) Intercalating drugs: DNA binding and molecular pharmacology. Adv Pharmacol Chemother 18:177–222. doi: 10.1016/S1054-3589(08)60255-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Martinez R, Chacon-Garcia L (2005) The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem 12(2):127–151PubMedGoogle Scholar
  14. 14.
    Baguley BC (1991) DNA intercalating anti-tumor agents. Anticancer Drugs 6:1–35Google Scholar
  15. 15.
    Catoen-Chackal S et al (2004) DNA binding to guide the development of tetrahydroindeno[1,2-b]pyrido[4,3,2-de]quinoline derivatives as cytotoxic agents. J Med Chem 47(14):3665–3673. doi: 10.1021/jm0400193 CrossRefPubMedGoogle Scholar
  16. 16.
    Tilak Raj T, Ambeker SY (1988) Synthesis of pyrimido[4′,5′:4,5]thieno(2,3-b)quinoline-4(3H)-ones. J Chem Res 50:537–551Google Scholar
  17. 17.
    Nandeeshaiah SK, Ambekar SY (1998) Synthesis, Dimroth rearrangment and blood platelet disaggregation property of pyrimido[4′,5′:4,5]selenolo(2,3-b)quinolines: a new class of condensed quinoline. Indian J Chem 37:995–1000Google Scholar
  18. 18.
    Nandeeshaiah SK, Ambeker SY (1994) Synthesis of 2-aryl-1,2,3,4-tetrahydropyrido [2′,3′:4,5] thieno[2,3-b]quinolin-4-ones. Indian J Chem 33:375–379Google Scholar
  19. 19.
    Via LD et al (2001) Synthesis, in vitro antiproliferative activity and DNA-interaction of benzimidazo quinazoline derivatives as potential anti-tumor agents. Farmaco 56:159–167. doi: 10.1016/S0014-827X(01)01079-5 CrossRefPubMedGoogle Scholar
  20. 20.
    Gopal M, Shahabuddin MS, Inamdar SR (2002) Interaction between 8-methoxypyrimido [4′,5′:4,5]thieno(2,3-b)quinoline-4(3H)-one antitumour drug and deoxyribo nucleic acid. Proc Indiana Acad Sci 114:687–696. doi: 10.1007/BF02708861 CrossRefGoogle Scholar
  21. 21.
    Gopal M, Shenoy S, Doddamani LS (2003) Antitumour activity of 4-amino and 8-methly-4-(3-diethyl aminopropylamino)pyrimido[4′,5′:4,5]thieno(2,3-b)quinoline. J Photochem Photobiol B 72:69–78. doi: 10.1016/j.jphotobiol.2003.09.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Gopal M, Veeranna S, Doddamani LS (2004) Intercalation binding of 4-butylamino pyrimido[4′,5′:4,5]selenolo(2,3-b)quinoline to DNA: relationship with invitro cytotoxicity. Spectrosc Lett 37(4):347–366. doi: 10.1081/SL-120039469 CrossRefGoogle Scholar
  23. 23.
    Shahabuddin MS, Gopal M, Raghavan SC (2007) Intercalating and antitumour activity of 4-oxopyrimido[4′,5′:4,5]thieno(2,3-b)quinoline-4(3H)-one. J Cancer Mol 3(5):139–146Google Scholar
  24. 24.
    Shahabuddin MS, Gopal M, Raghavan SC (2008) Intercalating, cytotoxic, antitumour activity of 8-Chloro and 4-Morpholinopyrimido [4′,5′:4,5]thieno(2,3-b)quinolines. J Photochem Photobiol 94:13–19Google Scholar
  25. 25.
    Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241. doi: 10.1016/S0140-6736(00)02490-9 CrossRefPubMedGoogle Scholar
  26. 26.
    El-Bayoumy K, Sinha R (2004) Mechanisms of mammary cancer chemoprevention by organoselenium compounds. Mutat Res 551(1–2):181–197. doi: 10.1016/j.mrfmmm.2004.02.023 PubMedGoogle Scholar
  27. 27.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  28. 28.
    Anto RJ, Maliekal TT, Karunagaran D (2000) L-929 cells harboring ectopically expressed RelA resist curcumin-induced apoptosis. J Biol Chem 275(21):15601–15604. doi: 10.1074/jbc.C000105200 CrossRefPubMedGoogle Scholar
  29. 29.
    Vermes I et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51. doi: 10.1016/0022-1759(95)00072-I CrossRefPubMedGoogle Scholar
  30. 30.
    Mukhopadhyay P et al (2007) Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protocols 2(9):2295–2301. doi: 10.1038/nprot.2007.327 CrossRefGoogle Scholar
  31. 31.
    Singh NP et al (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. doi: 10.1016/0014-4827(88)90265-0 CrossRefPubMedGoogle Scholar
  32. 32.
    Takefumi K et al (2003) Ritterazine B, a new cytotoxic narural compound, induces apoptosis in cancer cells. Cancer Chemother Pharmacol 51:202–208Google Scholar
  33. 33.
    Kaufmann SH et al (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53(17):3976–3985PubMedGoogle Scholar
  34. 34.
    Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18(53):7644–7655. doi: 10.1038/sj.onc.1203015 CrossRefPubMedGoogle Scholar
  35. 35.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi: 10.1038/35042675 CrossRefPubMedGoogle Scholar
  36. 36.
    Ogawara Y et al (2002) Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277(24):21843–21850. doi: 10.1074/jbc.M109745200 CrossRefPubMedGoogle Scholar
  37. 37.
    Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumour effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741. doi: 10.1016/S0006-2952(98)00307-4 CrossRefPubMedGoogle Scholar
  38. 38.
    Nelson SM, Ferguson LR, Denny WA (2004) DNA and the chromosome—varied targets for chemotherapy. Cell Chromosome 3(1):2. doi: 10.1186/1475-9268-3-2 CrossRefPubMedGoogle Scholar
  39. 39.
    Ahsan H et al (2007) Sanguinarine induces apoptosis of human pancreatic carcinoma AsPC-1 and BxPC-3 cells via modulations in Bcl-2 family proteins. Cancer Lett 249:198–208. doi: 10.1016/j.canlet.2006.08.018 CrossRefPubMedGoogle Scholar
  40. 40.
    Pastwa E et al (1998) Cytotoxic and DNA-damaging properties of N-[2-(Dimethylamino)ethyl]acridine-4-carboxamide (DACA) and its analogues. Biochem Pharmacol 56:351–359. doi: 10.1016/S0006-2952(98)00030-6 CrossRefPubMedGoogle Scholar
  41. 41.
    Auclair C et al (1988) Relationship between physicochemical and biological properties in a series of oxazolopyridocarbazole derivatives (OPCD); comparison with related antitumour agents. Anticancer Drug Des 3:133–139PubMedGoogle Scholar
  42. 42.
    Baez A et al (1983) Interaction between a 3-Nitrobenzo thiazolo (3,2-a)quinolinium antitumour drug and deoxyribonucleic acid. Biochem Pharmacol 32:2089–2094. doi: 10.1016/0006-2952(83)90431-8 CrossRefPubMedGoogle Scholar
  43. 43.
    Lin J et al (2003) Effects of astragali radix on the growth of different cancer cell lines. World J Gastroenterol 9(4):670–673PubMedGoogle Scholar
  44. 44.
    Cattaneo-Pangrazzi RM et al (2000) Cell-cycle arrest and p53-independent induction of apoptosis in vitro by the new anticancer drugs 5-FdUrd-P-FdCydOct and dCydPam-P-FdUrd in DU-145 human prostate cancer cells. J Cancer Res Clin Oncol 126(5):247–256. doi: 10.1007/s004320050339 CrossRefPubMedGoogle Scholar
  45. 45.
    Leonce S et al (2001) Induction of cyclin E and inhibition of DNA synthesis by the novel acronycine derivative S23906-1 precede the irreversible arrest of tumor cells in S phase leading to apoptosis. Mol Pharmacol 60(6):1383–1391PubMedGoogle Scholar
  46. 46.
    Chen HY et al (2004) Peplomycin induces G1 phase specific apoptosis in liver carcinoma cell line Bel-7402 involving G2 phase arrest. Acta Pharmacol Sin 25(12):1698–1704PubMedGoogle Scholar
  47. 47.
    Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20(4):214–220. doi: 10.1016/j.tig.2004.02.007 CrossRefPubMedGoogle Scholar
  48. 48.
    Reed JC (2008) Bcl-2-family proteins and hematologic malignancies: history and future prospects. Blood 111(7):3322–3330. doi: 10.1182/blood-2007-09-078162 CrossRefPubMedGoogle Scholar
  49. 49.
    Kaina B (2003) DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 66(8):1547–1554. doi: 10.1016/S0006-2952(03)00510-0 CrossRefPubMedGoogle Scholar
  50. 50.
    Kelekar A, Thompson CB (1998) Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8(8):324–330. doi: 10.1016/S0962-8924(98)01321-X CrossRefPubMedGoogle Scholar
  51. 51.
    Seki T et al (2001) Mechanism of growth-inhibitory effect of cisplatin on human pancreatic cancer cells and status of p53 gene. Anticancer Res 21(3B):1919–1924PubMedGoogle Scholar
  52. 52.
    Boldt S, Weidle UH, Kolch W (2002) The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis 23(11):1831–1838. doi: 10.1093/carcin/23.11.1831 CrossRefPubMedGoogle Scholar
  53. 53.
    Marshall C (1999) How do small GTPase signal transduction pathways regulate cell cycle entry? Curr Opin Cell Biol 11(6):732–736. doi: 10.1016/S0955-0674(99)00044-7 CrossRefPubMedGoogle Scholar
  54. 54.
    van den Brink MR et al (1999) The extracellular signal-regulated kinase pathway is required for activation-induced cell death of T cells. J Biol Chem 274(16):11178–11185. doi: 10.1074/jbc.274.16.11178 CrossRefPubMedGoogle Scholar
  55. 55.
    Basu S et al (1998) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J Biol Chem 273(46):30419–30426. doi: 10.1074/jbc.273.46.30419 CrossRefPubMedGoogle Scholar
  56. 56.
    Bacus SS et al (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20(2):147–155. doi: 10.1038/sj.onc.1204062 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. S. Shahabuddin
    • 1
  • Mridula Nambiar
    • 1
  • Bibha Choudhary
    • 2
  • Gopal M. Advirao
    • 3
  • Sathees C. Raghavan
    • 1
    Email author
  1. 1.Department of BiochemistryIndian Institute of ScienceBangaloreIndia
  2. 2.Manipal Institute of Regenerative MedicineManipal UniversityBangaloreIndia
  3. 3.Department of Studies and Research in BiochemistryKuvempu UniversityDavanagereIndia

Personalised recommendations