Investigational New Drugs

, Volume 27, Issue 2, pp 140–152 | Cite as

Application of population pharmacokinetic modeling in early clinical development of the anticancer agent E7820

  • Ron J. Keizer
  • Miren K. Zamacona
  • Mendel Jansen
  • David Critchley
  • Jantien Wanders
  • Jos H. Beijnen
  • Jan H. M. Schellens
  • Alwin D. R. Huitema
Phase I Studies

Summary

The aim of this study was to assess the population pharmacokinetics (PopPK) of the novel oral anti-cancer agent E7820. Both a non-linear mixed effects modeling analysis and a non-compartmental analysis (NCA) were performed and results were compared. Data were obtained from a phase I dose escalation study in patients with malignant solid tumors or lymphomas. E7820 was administered daily for 28 days, followed by a washout period of 7 days prior to the start of subsequent cycles. A one compartment model with linear elimination from the central compartment was shown to give adequate fit, while absorption was described using a turnover model. Final population parameter estimates of basic PK parameters obtained with the PopPK method were (RSE): clearance, 6.24 L/h (7.1%), volume of distribution, 66.0 L (8.5%), mean transit time to the absorption compartment, 0.638 h (6.5%). The intake of food prior to dose administration slowed absorption (2.8-fold, RSE 13%) and increased relative bioavailability of E7820 by 36% (RSE 14%), although the effect on C max and AUC was not significant. Comparison with the NCA approach showed approximately equal PK parameter estimates and food effect measures, although specific advantages of PopPK included efficiency in use of data and more appropriate assessment of variability.

Keywords

E7820 Population pharmacokinetics Mixed-effects modeling Non-compartmental analysis Oncology Alpha2-integrin 

References

  1. 1.
    Funahashi Y et al (2002) Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin alpha2 subunit on endothelium. Cancer Res 62:6116–6123PubMedGoogle Scholar
  2. 2.
    Semba T et al (2004) An angiogenesis inhibitor E7820 shows broad-spectrum tumor growth inhibition in a xenograft model: possible value of integrin alpha2 on platelets as a biological marker. Clin Cancer Res 10:1430–1438. doi: 10.1158/1078-0432.CCR-0109-03 PubMedCrossRefGoogle Scholar
  3. 3.
    Cross MJ, Claesson-Welsh L (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 22:201–207 doi: 10.1016/S0165-6147(00)01676-X PubMedCrossRefGoogle Scholar
  4. 4.
    Stavri GT et al (1995) Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation 92:11–14PubMedGoogle Scholar
  5. 5.
    Goodsell DS (2003) The molecular perspective: VEGF and angiogenesis. Stem Cells 21:118–119 doi: 10.1634/stemcells.21-1-118 PubMedCrossRefGoogle Scholar
  6. 6.
    Mita MM et al (2005) Pharmacokinetics (PK) and pharmacodynamics (PD) of E7820-an oral sulfonamide with novel, alpha-2 integrin mediated antiangiogenic properties: results of a phase I study. J Clin Oncol 23:3082 Meeting AbstractsGoogle Scholar
  7. 7.
    Mita MM et al (2006) Phase I study of an anti-angiogenic agent with a novel mechanism of action E7820: safety, pharmacokinetics (PK) and pharmacodynamic (PD) studies in patients (pts) with solid tumors. J Clin Oncol 24:3048 Meeting Abstractsdoi: 10.1200/JCO.2004.00.9720 CrossRefGoogle Scholar
  8. 8.
    FDA (1999) Guidance for industry: population pharmacokinetics.Google Scholar
  9. 9.
    Guo F, Letrent SP, Sharma A (2007) Population pharmacokinetics of a HER2 tyrosine kinase inhibitor CP-724,714 in patients with advanced malignant HER2 positive solid tumors. Cancer Chemother Pharmacol 60:799–809 doi: 10.1007/s00280-007-0427-6 PubMedCrossRefGoogle Scholar
  10. 10.
    Lee CKK et al (2006) Population pharmacokinetics of troxacitabine, a novel dioxolane nucleoside analogue. Clin Cancer Res 12:2158–2165 doi: 10.1158/1078-0432.CCR-05-2249 PubMedCrossRefGoogle Scholar
  11. 11.
    Urien S, Rezaí K, Lokiec F (2005) Pharmacokinetic modelling of 5-FU production from capecitabine—a population study in 40 adult patients with metastatic cancer. J Pharmacokinet Pharmacodyn 32:817–833 doi: 10.1007/s10928-005-0018-2 PubMedCrossRefGoogle Scholar
  12. 12.
    Urien S et al (2003) Phase I population pharmacokinetics of irofulven. Anticancer Drugs 14:353–358 doi: 10.1097/00001813-200306000-00005 PubMedCrossRefGoogle Scholar
  13. 13.
    van Kesteren C et al (2002) Development and validation of limited sampling strategies for prediction of the systemic exposure to the novel anticancer agent E7070 (N-(3-chloro-7-indolyl)-1,4-benzenedisulphonamide). Br J Clin Pharmacol 54:463–471 doi: 10.1046/j.1365-2125.2002.01684.x PubMedCrossRefGoogle Scholar
  14. 14.
    Nguyen L et al (2002) Population pharmacokinetics model and limited sampling strategy for intravenous vinorelbine derived from phase I clinical trials. Br J Clin Pharmacol 53:459–468 doi: 10.1046/j.1365-2125.2002.01581.x PubMedCrossRefGoogle Scholar
  15. 15.
    Crul M et al (2002) Population pharmacokinetics of the novel anticancer agent KRN7000. Cancer Chemother Pharmacol 49:287–293 doi: 10.1007/s00280-001-0413-3 PubMedCrossRefGoogle Scholar
  16. 16.
    Tanswell P et al (2001) Population pharmacokinetics of antifibroblast activation protein monoclonal antibody F19 in cancer patients. Br J Clin Pharmacol 51:177–180 doi: 10.1111/j.1365-2125.2001.01335.x PubMedCrossRefGoogle Scholar
  17. 17.
    Zhou H et al (2000) Population pharmacokinetics/toxicodynamics (PK/TD) relationship of SAM486A in phase I studies in patients with advanced cancers. J Clin Pharmacol 40:275–283 doi: 10.1177/00912700022008946 PubMedCrossRefGoogle Scholar
  18. 18.
    Thomson AH et al (1999) Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours. Br J Cancer 81:99–107 doi: 10.1038/sj.bjc.6690657 PubMedCrossRefGoogle Scholar
  19. 19.
    FDA (2000) Good laboratory practice for nonclinical laboratory studiesGoogle Scholar
  20. 20.
    FDA (2002) Guidance for industry: food-effect bioavailability and fed bioequivalence studiesGoogle Scholar
  21. 21.
    Pinheiro JC, Bates DM (2000) Mixed-effect models in S and S-Plus. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Beal SL, Sheiner LB (1989) NONMEM users guides. Icon Development Solutions, Ellicott City, Maryland, USAGoogle Scholar
  23. 23.
    Soy D, Beal SL, Sheiner LB (2004) Population one-compartment pharmacokinetic analysis with missing dosage data. Clin Pharmacol Ther 76:441–451 doi: 10.1016/j.clpt.2004.07.010 PubMedCrossRefGoogle Scholar
  24. 24.
    Byon W, Fletcher CV, Brundage RC (2008) Impact of censoring data below an arbitrary quantification limit on structural model misspecification. J Pharmacokinet Pharmacodyn 35(1):101–116 (Feb)Google Scholar
  25. 25.
    Beal SL (2001) Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn 28:481–504 doi: 10.1023/A:1012299115260 PubMedCrossRefGoogle Scholar
  26. 26.
    Abramowitz M, Stegun IA (1972) Handbook of mathematical functions. National Bureau of Standards, WashingtonGoogle Scholar
  27. 27.
    Karlsson MO, Savic RM (2007) Diagnosing model diagnostics. Clin Pharmacol Ther 82:17–20 doi: 10.1038/sj.clpt.6100241 PubMedCrossRefGoogle Scholar
  28. 28.
    Savic RM, Jonker DM, Kerbusch T, Karlsson MO (2007) Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 34(5):711–726 (Oct)PubMedCrossRefGoogle Scholar
  29. 29.
    Lindbom L, Pihlgren P, Jonsson EN (2005) PsN-Toolkit—a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79:241–257 doi: 10.1016/j.cmpb.2005.04.005 PubMedCrossRefGoogle Scholar
  30. 30.
    Jonsson EN, Karlsson O (1999) Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 58:51–64 doi: 10.1016/S0169-2607(98)00067-4 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ron J. Keizer
    • 1
  • Miren K. Zamacona
    • 2
  • Mendel Jansen
    • 2
  • David Critchley
    • 2
  • Jantien Wanders
    • 2
  • Jos H. Beijnen
    • 1
    • 4
  • Jan H. M. Schellens
    • 3
    • 4
  • Alwin D. R. Huitema
    • 1
  1. 1.Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/Slotervaart HospitalAmsterdamThe Netherlands
  2. 2.Eisai LimitedLondonUK
  3. 3.Department of Medical OncologyAntoni van Leeuwenhoek Hospital/the Netherlands Cancer InstituteAmsterdamThe Netherlands
  4. 4.Division of Drug Toxicology, Section of Biomedical Analysis, Department of Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations