Investigational New Drugs

, Volume 26, Issue 1, pp 13–24

Protein kinase C-β inhibitor enzastaurin (LY317615.HCI) enhances radiation control of murine breast cancer in an orthotopic model of bone metastasis

  • Arkadiusz Z. Dudek
  • Pawel Zwolak
  • Piotr Jasinski
  • Kaoru Terai
  • Nathan J. Gallus
  • Marna E. Ericson
  • Faris Farassati
Preclinical Studies

Summary

Radiation therapy is a widely used treatment for metastatic bone cancer, but the rapid onset of tumor radioresistance is a major problem. We investigated the radiosensitizing effect of enzastaurin, a protein kinase Cβ (PKCβ) inhibitor, on bone tumor growth and tumor-related pain. We found that enzastaurin enhanced the effect of ionizing radiation on cultured murine 4T1 breast cancer and murine endothelial cells, suppressing their proliferation and colony formation. Enzastaurin and ionizing radiation also induced caspase-mediated apoptosis of 4T1 cells to a greater degree than radiation alone. Enzastaurin treatment of 4T1 cells blocked the phosphorylation of PKCβ, as well as Ras and two of its downstream effectors ERK1/2 and RAL-GTP. Using an orthotopic model of bone metastasis, we observed that a combination of enzastaurin and localized radiation treatment reduced tumor blood vessel density, bone destruction and pain compared to single modality treatment. In conclusion, we demonstrate that inhibition of PKCβ in combination with localized radiation treatment suppresses tumor growth and alleviates pain as compared to radiation-only treatment. We also show that the radiosensitizing effect of enzastaurin is associated with suppression of tumor cell proliferation and tumor-induced angiogenesis possibly through inhibition of the Ras pathway.

Keywords

Enzastaurin Protein kinase C-beta Radiation Metastatic bone cancer Bone cancer pain Ras inhibition 

References

  1. 1.
    Black JD (2000) Protein kinase C-mediated regulation of the cell cycle. Front Biosci 5:D406–D423PubMedCrossRefGoogle Scholar
  2. 2.
    Mellor H, Parker PJ (1998) The extended protein kinase C superfamily. Biochem J 332(Pt 2):281–292PubMedGoogle Scholar
  3. 3.
    Kawakami Y, Nishimoto H, Kitaura J et al (2004) Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279(46):47720–47725PubMedCrossRefGoogle Scholar
  4. 4.
    Goode N, Hughes K, Woodgett JR, Parker PJ (1992) Differential regulation of glycogen synthase kinase-3 beta by protein kinase C isotypes. J Biol Chem 267(24):16878–16882PubMedGoogle Scholar
  5. 5.
    Kolch W, Heidecker G, Kochs G et al (1993) Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364(6434):249–252PubMedCrossRefGoogle Scholar
  6. 6.
    Liu JF, Crepin M, Liu JM, Barritault D, Ledoux D (2002) FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway. Biochem Biophys Res Commun 293(4):1174–1182PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang J, Anastasiadis PZ, Liu Y, Thompson EA, Fields AP (2004) Protein kinase C (PKC) betaII induces cell invasion through a Ras/Mek-, PKC iota/Rac 1-dependent signaling pathway. J Biol Chem 279(21):22118–22123PubMedCrossRefGoogle Scholar
  8. 8.
    Lahn M, Kohler G, Sundell K et al (2004) Protein kinase C alpha expression in breast and ovarian cancer. Oncology 67(1):1–10PubMedCrossRefGoogle Scholar
  9. 9.
    Hoey RP, Sanderson C, Iddon J, Brady G, Bundred NJ, Anderson NG (2003) The parathyroid hormone-related protein receptor is expressed in breast cancer bone metastases and promotes autocrine proliferation in breast carcinoma cells. Br J Cancer 88(4):567–573PubMedCrossRefGoogle Scholar
  10. 10.
    Mihai R, Stevens J, McKinney C, Ibrahim NB (2006) Expression of the calcium receptor in human breast cancer—a potential new marker predicting the risk of bone metastases. Eur J Surg Oncol 32(5):511–515PubMedCrossRefGoogle Scholar
  11. 11.
    Tfelt-Hansen J, MacLeod RJ, Chattopadhyay N et al (2003) Calcium-sensing receptor stimulates PTHrP release by pathways dependent on PKC, p38 MAPK, JNK, and ERK1/2 in H-500 cells. Am J Physiol 285(2):E329–E337Google Scholar
  12. 12.
    Graff JR, McNulty AM, Hanna KR et al (2005) The protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 65(16):7462–7469PubMedCrossRefGoogle Scholar
  13. 13.
    Keyes KA, Mann L, Sherman M et al (2004) LY317615 decreases plasma VEGF levels in human tumor xenograft-bearing mice. Cancer Chemother Pharmacol 53(2):133–140PubMedCrossRefGoogle Scholar
  14. 14.
    Weidhaas JB, Eisenmann DM, Holub JM, Nallur SV (2006) A conserved RAS/mitogen-activated protein kinase pathway regulates DNA damage-induced cell death postirradiation in Radelegans. Cancer Res 66(21):10434–10438PubMedCrossRefGoogle Scholar
  15. 15.
    Goblirsch MJ, Zwolak P, Clohisy DR (2005) Advances in understanding bone cancer pain. J Cell Biochem 96(4):682–688PubMedCrossRefGoogle Scholar
  16. 16.
    Ewing P, Wilke A, Brockhoff G et al (2003) Isolation and transplantation of allogeneic pulmonary endothelium derived from GFP transgenic mice. J Immunol Methods 283(1–2):307–315PubMedCrossRefGoogle Scholar
  17. 17.
    Dong QG, Bernasconi S, Lostaglio S et al (1997) A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants. Arterioscler Thromb Vasc Biol 17(8):1599–1604PubMedGoogle Scholar
  18. 18.
    Sevcik MA, Ghilardi JR, Peters CM et al (2005) Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain 115(1–2):128–141PubMedCrossRefGoogle Scholar
  19. 19.
    Honore P, Luger NM, Sabino MA et al (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6(5):521–528PubMedCrossRefGoogle Scholar
  20. 20.
    Goblirsch M, Mathews W, Lynch C et al (2004) Radiation treatment decreases bone cancer pain, osteolysis and tumor size. Radiat Res 161(2):228–234PubMedCrossRefGoogle Scholar
  21. 21.
    Weber KL, Doucet M, Price JE, Baker C, Kim SJ, Fidler IJ (2003) Blockade of epidermal growth factor receptor signaling leads to inhibition of renal cell carcinoma growth in the bone of nude mice. Cancer Res 63(11):2940–2947PubMedGoogle Scholar
  22. 22.
    Lees RL, Heersche JN (1999) Macrophage colony stimulating factor increases bone resorption in dispersed osteoclast cultures by increasing osteoclast size. J Bone Miner Res 14(6):937–945PubMedCrossRefGoogle Scholar
  23. 23.
    Sabino MA, Ghilardi JR, Jongen JL et al (2002) Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Res 62(24):7343–7349PubMedGoogle Scholar
  24. 24.
    Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ (1998) Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst 90(6):447–454PubMedCrossRefGoogle Scholar
  25. 25.
    Tabatabai G, Frank B, Wick A, Lemke D, von Kurthy G, Obermuller U, Heckl S, Christ G, Weller M, Wick W (2007) Synergistic antiglioma activity of radiotherapy and enzastaurin. Ann Neurol 61(2):153–161, FebPubMedCrossRefGoogle Scholar
  26. 26.
    Querfeld C, Rizvi MA, Kuzel TM et al (2006) The selective protein kinase C beta inhibitor enzastaurin induces apoptosis in cutaneous T-cell lymphoma cell lines through the AKT pathway. J Invest Dermatol 126(7):1641–1647PubMedCrossRefGoogle Scholar
  27. 27.
    Rizvi MA, Ghias K, Davies KM et al (2006) Enzastaurin (LY317615), a protein kinase Cbeta inhibitor, inhibits the AKT pathway and induces apoptosis in multiple myeloma cell lines. Mol Cancer Ther 5(7):1783–1789PubMedCrossRefGoogle Scholar
  28. 28.
    Kim IA, Bae SS, Fernandes A et al (2005) Selective inhibition of Ras, phosphoinositide 3 kinase, and Akt isoforms increases the radiosensitivity of human carcinoma cell lines. Cancer Res 65(17):7902–7910PubMedGoogle Scholar
  29. 29.
    Lee SW, Kwak HB, Chung WJ, Cheong H, Kim HH, Lee ZH (2003) Participation of protein kinase C beta in osteoclast differentiation and function. Bone 32(3):217–227PubMedCrossRefGoogle Scholar
  30. 30.
    Rousselle AV, Heymann D (2002) Osteoclastic acidification pathways during bone resorption. Bone 30(4):533–540PubMedCrossRefGoogle Scholar
  31. 31.
    Mach DB, Rogers SD, Sabino MC et al (2002) Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113(1):155–166PubMedCrossRefGoogle Scholar
  32. 32.
    Olson TH, Riedl MS, Vulchanova L, Ortiz-Gonzalez XR, Elde R (1998) An acid sensing ion channel (ASIC) localizes to small primary afferent neurons in rats. Neuroreport 9(6):1109–1113PubMedCrossRefGoogle Scholar
  33. 33.
    Carducci MA, Musib L, Kies MS et al (2006) Phase I dose escalation and pharmacokinetic study of enzastaurin, an oral protein kinase C beta inhibitor, in patients with advanced cancer. J Clin Oncol 24(25):4092–4099, Sep 1PubMedCrossRefGoogle Scholar
  34. 34.
    Rademaker-Lakhai JM, Beerepoot LV, Mehra N et al (2007) Phase I pharmacokinetic and pharmacodynamic study of the oral protein kinase C {beta}-inhibitor enzastaurin in combination with gemcitabine and cisplatin in patients with advanced cancer. Clin Cancer Res 13(15):4474–4481, Aug 1PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Arkadiusz Z. Dudek
    • 1
  • Pawel Zwolak
    • 1
  • Piotr Jasinski
    • 1
  • Kaoru Terai
    • 1
  • Nathan J. Gallus
    • 2
  • Marna E. Ericson
    • 2
  • Faris Farassati
    • 1
  1. 1.Division of Hematology, Oncology and Transplantation Department of MedicineUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of DermatologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations