Investigational New Drugs

, Volume 24, Issue 5, pp 393–401

Disposition of 9-nitrocamptothecin and its 9-aminocamptothecin metabolite in relation to ABC transporter genotypes

  • William C. Zamboni
  • Ramesh K. Ramanathan
  • Howard L. McLeod
  • Sridhar Mani
  • Douglas M. Potter
  • Sandra Strychor
  • Lauren J. Maruca
  • Cristi R. King
  • Laura L. Jung
  • Robert A. Parise
  • Merrill J. Egorin
  • Todd A. Davis
  • Sharon Marsh
Preclinical Studies


Purpose: The source of the pharmacokinetic variability of 9-nitrocamptothecin (9NC) and its 9-aminocamptothecin (9AC) metabolite is unknown. ATP-binding cassette (ABC) transporters have been reported to modulate camptothecin analogues, are associated with camptothecin resistance, and might also affect 9NC and 9AC pharmacokinetics. The aim of this study was to evaluate the functional consequence of known single nucleotide polymorphisms in the transporter genes ABCB1, ABCC2, and ABCG2 on the pharmacokinetic disposition of 9NC and 9AC. Experimental design: Pharmacokinetic and genotyping studies were performed in 55 patients as part of two phase I studies of 9NC in patients with refractory solid tumors, a phase II study of 9NC in patients with advanced colon cancer, and a study evaluating the disposition of 9NC after administration of a single dose under fasting conditions. DNA was isolated from plasma and analyzed for variants in ABCB1, ABCC2, and ABCG2 genes. The ABCB1 1236C>T (n = 43), ABCB1 2677G>T/A (n = 43), ABCB1 3435C>T (n = 43), ABCC2 3972C>T (n = 39), and ABCG2 421C>A (n = 42) variants were analyzed using Pyrosequencing. Results: The ABCG2 421C>A genotype significantly affected the pharmacokinetics of 9AC. The mean 9AC lactone AUC/dose for wild-type (n = 25) and heterozygous (n = 2) patients were 14.3 ng/mL · h and 51.1 ng/mL. h, respectively (P = 0.032). The mean ± SD 9AC total AUC/dose for wild-type (n = 39) and heterozygous (n = 3) patients were 91.9 ± 78.3 ng/mL · h and 129.0 ± 90.5 ng/mL · h, respectively (P = 0.40). 9NC and 9AC disposition were not significantly influenced by variants in ABCB1, ABCC2, and ABCG2, and ABCB1 and ABCC2, respectively (P>0.05). Conclusion: These findings suggest that inter-individual variability in 9AC disposition, but not 9NC, may be influenced, in part, by ABCG2 genotype. In contrast, there was no evidence for a relationship between ABCG2 and the disposition of 9NC, or for relationships between ABCB1 and ABCC2 genotypes and the disposition of 9NC or 9AC.


ABC transporters Genotyping Pharmacogenetics 9AC 9NC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zamboni WC, Bowman LC, Tan M, et al (1999) Interpatient variability in bioavailability of the intravenous formulation of topotecan given orally to children with recurrent solid tumors. Cancer Chemother Pharmacol 43:454–460PubMedCrossRefGoogle Scholar
  2. 2.
    Gupta E, Luo F, Lallo A, et al (2000) The intestinal absorption of camptothecin, a highly lipophilic drug, across Caco-2 cells is mediated by active transporter(s). Anticancer Res 20:1013–1016PubMedGoogle Scholar
  3. 3.
    Drengler RL, Kuhn JG, Schaaf LJ, et al (1999) Phase I and pharmacokinetic trial of oral irinotecan administered daily for 5 days every 3 weeks in patients with solid tumors. J Clin Oncol 17:685–696PubMedGoogle Scholar
  4. 4.
    Loos WJ, Gelderblom H, Sparreboom A, Verweij J, de Jonge MJ (2000) Inter- and intrapatient variability in oral topotecan pharmacokinetics: implications for body-surface area dosage regimens. Clin Cancer Res 6:2685–2689PubMedGoogle Scholar
  5. 5.
    Kruijtzer CM, Beijnen JH, Rosing H, et al (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20:2943–2950PubMedCrossRefGoogle Scholar
  6. 6.
    Schoemaker NE, Mathot RA, Schoffski P, Rosing H, Schellens JH, Beijnen JH (2002) Development of an optimal pharmacokinetic sampling schedule for rubitecan administered orally in a daily times five schedule. Cancer Chemother Pharmacol 50:514–517PubMedCrossRefGoogle Scholar
  7. 7.
    Raymond E, Campone M, Stupp R, et al (2002) Multicentre phase II and pharmacokinetic study of RFS2000 (9-nitro-camptothecin) administered orally 5 days a week in patients with glioblastoma multiforme. Eur J Cancer 38:1348–1350PubMedCrossRefGoogle Scholar
  8. 8.
    Jung LL, Ramanathan RK, Egorin MJ, et al (2004) Pharmacokinetic studies of 9-nitrocamptothecin on intermittent and continuous schedules of administration in patients with solid tumors. Cancer Chemother Pharmacol 54:487–496PubMedCrossRefGoogle Scholar
  9. 9.
    Akhtar S, Beckman RA, Mould DR, Doyle E, Fields SZ, Wright J (2000) Pretreatment with ranitidine does not reduce the bioavailability of orally administered topotecan. Cancer Chemother Pharmacol 46:204–210PubMedCrossRefGoogle Scholar
  10. 10.
    Allen JD, van Loevezijn A, Lakhai JM, et al (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425PubMedGoogle Scholar
  11. 11.
    Pazdur R, Diaz-Canton E, Ballard WP, et al (1997) Phase II trial of 9-aminocamptothecin administered as a 72-h continuous infusion in metastatic colorectal carcinoma. J Clin Oncol 15:2905–2909PubMedGoogle Scholar
  12. 12.
    Takimoto CH, Thomas R (2000) The clinical development of 9-aminocamptothecin. Ann N Y Acad Sci 922:224–236PubMedCrossRefGoogle Scholar
  13. 13.
    Kirstein MN, Houghton PJ, Cheshire PJ, et al (2001) Relation between 9-aminocamptothecin systemic exposure and tumor response in human solid tumor xenografts. Clin Cancer Res 7:358–366PubMedGoogle Scholar
  14. 14.
    Bates SE, Robey R, Miyake K, Rao K, Ross DD, Litman T (2001) The role of half-transporters in multidrug resistance. J Bioenerg Biomembr 33:503–511PubMedCrossRefGoogle Scholar
  15. 15.
    Leonard GD, Polgar O, Bates SE (2002) ABC transporters and inhibitors: New targets, new agents. Curr Opin Investig Drugs 3:1652–1659PubMedGoogle Scholar
  16. 16.
    Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58:5337–5339PubMedGoogle Scholar
  17. 17.
    Doyle LA, Yang W, Abruzzo LV, et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670PubMedCrossRefGoogle Scholar
  18. 18.
    Miyake K, Mickley L, Litman T, et al (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Res 59:8–13PubMedGoogle Scholar
  19. 19.
    Allen JD, Schinkel AH (2002) Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2). Mol Cancer Ther 1:427–434PubMedGoogle Scholar
  20. 20.
    Ross DD, Yang W, Abruzzo LV, et al (1999) A typical multidrug resistance: Breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91:429–433PubMedCrossRefGoogle Scholar
  21. 21.
    Dean M, Allikmets R (1995) Evolution of ATP-binding cassette transporter genes. Curr Opin Genet Dev 5:779–785PubMedCrossRefGoogle Scholar
  22. 22.
    Brangi M, Litman T, Ciotti M, et al (1999) Camptothecin resistance: Role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 59:5938–5946PubMedGoogle Scholar
  23. 23.
    Miyake K, Litman T, Robey R, Bates SE, Brangi M (1999) Camptothecin resistance: Role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Lett 146:117–126PubMedCrossRefGoogle Scholar
  24. 24.
    Sai K, Kaniwa N, Itoda M, et al (2003) Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics 13:741–757PubMedCrossRefGoogle Scholar
  25. 25.
    Allikmets R, Gerrard B, Hutchinson A, Dean M (1996) Characterization of the human ABC superfamily: Isolation and mapping of 21 new genes using the expressed sequence tags database. Hum Mol Genet 5:1649–1655PubMedCrossRefGoogle Scholar
  26. 26.
    Kool M, de Haas M, Scheffer GL, et al (1997) Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 57:3537–3547PubMedGoogle Scholar
  27. 27.
    Rocchi E, Khodjakov A, Volk EL, et al (2000) The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun 271:42–46PubMedCrossRefGoogle Scholar
  28. 28.
    Jonker JW, Smit JW, Brinkhuis RF, et al (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92:1651–1656PubMedCrossRefGoogle Scholar
  29. 29.
    Miyake K, Mickley L, Litman T, et al (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: Demonstration of homology to ABC transport genes. Cancer Res 59:8–13PubMedGoogle Scholar
  30. 30.
    Doyle LA, Yang W, Abruzzo LV, et al (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670PubMedCrossRefGoogle Scholar
  31. 31.
    Zamboni WC, Goel S, Iqbal T, Parise RA, Strychor S, Repinski TVW, Egorin MJ, Mani S (2005) Clinical and pharmacokinetic study evaluating the effect of food on the disposition of 9-nitrocamptothecin and its 9-aminocamptothecin metabolite in patients with solid tumors. Submitted to Cancer Chemother Pharmacol in AprilGoogle Scholar
  32. 32.
    D’Argenio DZ, Schmuitzky A: ADAPT II user’s guide: Biomedical simulations resource, 1990Google Scholar
  33. 33.
    Rowland M, Tozer T (eds) (1999) Clinical pharmacokinetics: Concepts and applications. Philadelphia, Lea and FebigerGoogle Scholar
  34. 34.
    Mathijssen RH, Marsh S, Karlsson MO, et al (2003) Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 9:3246–3253PubMedGoogle Scholar
  35. 35.
    Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA (2002) Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–434PubMedCrossRefGoogle Scholar
  36. 36.
    Sparreboom A, Gelderblom H, Marsh S, et al (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 76:38–44PubMedCrossRefGoogle Scholar
  37. 37.
    Santana VM, Zamboni WC, Kirstein MN, et al (2003) A pilot study of protracted topotecan dosing using a pharmacokinetically guided dosing approach in children with solid tumors. Clin Cancer Res 9:633–640PubMedGoogle Scholar
  38. 38.
    Rajendra R, Gounder MK, Saleem A, et al (2003) Differential effects of the breast cancer resistance protein on the cellular accumulation and cytotoxicity of 9-aminocamptothecin and 9-nitrocamptothecin. Cancer Res 63:3228–3233PubMedGoogle Scholar
  39. 39.
    de Jong FA, Marsh S, Mathijssen RH, et al (2004) ABCG2 pharmacogenetics: Ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 10:5889–5894PubMedCrossRefGoogle Scholar
  40. 40.
    Innocenti F, Undevia SD, Chen X, Das S, Ramirex J, Dolan ME, Relling MV, Kroetz DL, Ratain MJ: Pharmacogenetic analysis of interindividual irinotecan (CPT-11) pharmacokinetics (PK) variability: Evidence for a functional variant of ABCC2. Proceedings of ASCO 2004:#2010Google Scholar
  41. 41.
    Mathijssen RH, de Jong FA, van Schaik RH, et al (2004) Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J Natl Cancer Inst 96:1585–1592PubMedCrossRefGoogle Scholar
  42. 42.
    Pantazis P, Harris N, Mendoza J, Giovanella B (1995) The role of pH and serum albumin in the metabolic conversion of 9-nitrocamptothecin to 9-aminocamptothecin by human hematopoietic and other cells. Eur J Haematol 55:211–213PubMedCrossRefGoogle Scholar
  43. 43.
    Hinz HR, Harris NJ, Natelson EA, Giovanella BC (1994) Pharmacokinetics of the in vivo and in vitro conversion of 9-nitro-20(S)-camptothecin to 9-amino-20(S)-camptothecin in humans, dogs, and mice. Cancer Res 54:3096–3100PubMedGoogle Scholar
  44. 44.
    Schoffski P, Herr A, Vermorken JB, et al (2002) Clinical phase II study and pharmacological evaluation of rubitecan in non-pretreated patients with metastatic colorectal cancer-significant effect of food intake on the bioavailability of the oral camptothecin analogue. Eur J Cancer 38:807–813PubMedCrossRefGoogle Scholar
  45. 45.
    Natelson EA, Giovanella BC, Verschraegen CF, et al (1996) Phase I clinical and pharmacological studies of 20-(S)-camptothecin and 20-(S)-9-nitrocamptothecin as anticancer agents. Ann NY Acad Sci 803:224–230PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • William C. Zamboni
    • 1
    • 2
    • 3
    • 8
  • Ramesh K. Ramanathan
    • 1
    • 3
  • Howard L. McLeod
    • 4
  • Sridhar Mani
    • 5
  • Douglas M. Potter
    • 6
    • 7
  • Sandra Strychor
    • 1
  • Lauren J. Maruca
    • 1
  • Cristi R. King
    • 4
  • Laura L. Jung
    • 1
  • Robert A. Parise
    • 1
  • Merrill J. Egorin
    • 1
    • 3
  • Todd A. Davis
    • 4
  • Sharon Marsh
    • 4
  1. 1.Molecular Therapeutics Drug Discovery ProgramUniversity of Pittsburgh Cancer InstitutePittsburgh
  2. 2.Department of Pharmaceutical Sciences, School of PharmacyUniversity of PittsburghPittsburgh
  3. 3.Division of Hematology/Oncology, Department of Medicine, School of MedicineUniversity of PittsburghPittsburgh
  4. 4.Department of MedicineWashington University School of MedicineSt. Louis
  5. 5.Medicine, Oncology, and Molecular GeneticsAlbert Einstein College of MedicineBronx
  6. 6.Department of Biostatistics, Graduate School of Public HealthUniversity of PittsburghPittsburgh
  7. 7.Biostatistics FacilityUniversity of Pittsburgh Cancer InstitutePittsburgh
  8. 8.University of Pittsburgh Cancer InstituteHillman Cancer Research CenterPittsburgh

Personalised recommendations