Documenta Ophthalmologica

, Volume 139, Issue 3, pp 171–184 | Cite as

Late-onset night blindness with peripheral flecks accompanied by progressive trickle-like macular degeneration

  • Kazushige TsunodaEmail author
  • Kaoru Fujinami
  • Kazutoshi Yoshitake
  • Takeshi Iwata
Original Research Article



To report the clinical and genetic characteristics of 6 cases with late-onset night blindness with peripheral flecks accompanied by progressive trickle-like macular degeneration.


Clinical and genetic data were collected from 6 independent patients who complained of night blindness in their fifth to eighth decade of life. The ophthalmological examinations included ophthalmoscopy, fundus autofluorescence (FAF), and full-field electroretinography (ERG). Whole exome sequencing with target gene analysis was performed to determine the causative genes and variants.


All of the patients first complained of night blindness at the ages of 40–71 years. Funduscopic examinations demonstrated white or atrophic flecks scattered in the posterior pole and peripheral retina bilaterally. FAF showed patchy hypo-autofluorescence spots in the posterior pole similar to that of the trickling type of age-related macular degeneration (AMD). The region of abnormal FAF rapidly expanded with age, and one eye developed a choroidal neovascularization. The full-field scotopic ERGs with 20 min of dark adaptation were severely reduced or extinguished in all cases. There was partial recovery of the ERGs after 180 min of dark adaptation. The cone ERGs were reduced in all cases. Whole exome sequencing revealed no pathogenic variants of 301 retinal disease-associated genes.


The six cases had some common features with the flecked retina syndrome, familial drusen, and late-onset retinal degeneration although none had pathogenic variants causative for these disorders. These cases may represent a subset of severe trickling AMD or a new clinical entity of acquired pan-retinal visual cycle deficiency of unknown etiology.


Night blindness White dot syndrome Macular degeneration Trickling AMD 



We thank the patients and their families for participation in this study. We thank Professor Emeritus Duco Hamasaki of the Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, for discussions and editing our manuscript.


This study is supported by research grants from the Japan Agency for Medical Research and Development (AMED), the Ministry of Health, Labor and Welfare, and Japan (18ek0109282h0002 to TI), Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (H26-26462674 to KT, 16H06269, 16KK0193 to KF), National Hospital Organization Network Research Fund (H30-NHO-Sensory Organs-03 to KF, KT), and Novartis Research Grant (2018 to KT). Kaoru Fujinami is supported by Foundation Fighting Blindness, USA, and Great Britain Sasakawa Foundation Butterfield Awards, UK.

Compliance with ethical standards

Conflict of interest

The authors have no proprietary or commercial interest in any materials discussed in this article.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Review Board/Ethics Committee of the National Institute of Sensory Organs, National Hospital Organization, Tokyo Medical Center, Reference: R18-029) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Yamamoto H, Simon A, Eriksson U, Harris E, Berson EL, Dryja TP (1999) Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Nat Genet 22(2):188–191. CrossRefPubMedGoogle Scholar
  2. 2.
    Maw MA, Kennedy B, Knight A, Bridges R, Roth KE, Mani EJ, Mukkadan JK, Nancarrow D, Crabb JW, Denton MJ (1997) Mutation of the gene encoding cellular retinaldehyde-binding protein in autosomal recessive retinitis pigmentosa. Nat Genet 17(2):198–200. CrossRefPubMedGoogle Scholar
  3. 3.
    Naz S, Ali S, Riazuddin SA, Farooq T, Butt NH, Zafar AU, Khan SN, Husnain T, Macdonald IM, Sieving PA, Hejtmancik JF, Riazuddin S (2011) Mutations in RLBP1 associated with fundus albipunctatus in consanguineous Pakistani families. Br J Ophthalmol 95(7):1019–1024. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schatz P, Preising M, Lorenz B, Sander B, Larsen M, Rosenberg T (2011) Fundus albipunctatus associated with compound heterozygous mutations in RPE65. Ophthalmology 118(5):888–894. CrossRefPubMedGoogle Scholar
  5. 5.
    Littink KW, van Genderen MM, van Schooneveld MJ, Visser L, Riemslag FC, Keunen JE, Bakker B, Zonneveld MN, den Hollander AI, Cremers FP, van den Born LI (2012) A homozygous frameshift mutation in LRAT causes retinitis punctata albescens. Ophthalmology 119(9):1899–1906. CrossRefPubMedGoogle Scholar
  6. 6.
    Elison JR, Friedman AH, Brodie SE (2004) Acquired subretinal flecks secondary to hypovitaminosis A in a patient with hepatitis C. Doc Ophthalmol 109(3):279–281CrossRefGoogle Scholar
  7. 7.
    Apushkin MA, Fishman GA (2005) Improvement in visual function and fundus findings for a patient with vitamin A-deficient retinopathy. Retina 25(5):650–652CrossRefGoogle Scholar
  8. 8.
    Genead MA, Fishman GA, Lindeman M (2009) Fundus white spots and acquired night blindness due to vitamin A deficiency. Doc Ophthalmol 119(3):229–233. CrossRefPubMedGoogle Scholar
  9. 9.
    Aleman TS, Garrity ST, Brucker AJ (2013) Retinal structure in vitamin A deficiency as explored with multimodal imaging. Doc Ophthalmol 127(3):239–243. CrossRefPubMedGoogle Scholar
  10. 10.
    Heckenlively JR (1998) Genetic diseases of the eye. Congenital stationary night blindness. Oxford University Press, New YorkGoogle Scholar
  11. 11.
    Marmor MF (1990) Long-term follow-up of the physiologic abnormalities and fundus changes in fundus albipunctatus. Ophthalmology 97(3):380–384CrossRefGoogle Scholar
  12. 12.
    Nakamura M, Hotta Y, Tanikawa A, Terasaki H, Miyake Y (2000) A high association with cone dystrophy in fundus albipunctatus caused by mutations of the RDH5 gene. Invest Ophthalmol Vis Sci 41(12):3925–3932PubMedGoogle Scholar
  13. 13.
    Miyake Y, Shiroyama N, Sugita S, Horiguchi M, Yagasaki K (1992) Fundus albipunctatus associated with cone dystrophy. Br J Ophthalmol 76(6):375–379. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yamamoto H, Yakushijin K, Kusuhara S, Escano MF, Nagai A, Negi A (2003) A novel RDH5 gene mutation in a patient with fundus albipunctatus presenting with macular atrophy and fading white dots. Am J Ophthalmol 136(3):572–574CrossRefGoogle Scholar
  15. 15.
    Niwa Y, Kondo M, Ueno S, Nakamura M, Terasaki H, Miyake Y (2005) Cone and rod dysfunction in fundus albipunctatus with RDH5 mutation: an electrophysiological study. Invest Ophthalmol Vis Sci 46(4):1480–1485. CrossRefPubMedGoogle Scholar
  16. 16.
    Wada Y, Abe T, Sato H, Tamai M (2001) A novel Gly35Ser mutation in the RDH5 gene in a Japanese family with fundus albipunctatus associated with cone dystrophy. Arch Ophthalmol 119(7):1059–1063CrossRefGoogle Scholar
  17. 17.
    Sergouniotis PI, Sohn EH, Li Z, McBain VA, Wright GA, Moore AT, Robson AG, Holder GE, Webster AR (2011) Phenotypic variability in RDH5 retinopathy (fundus albipunctatus). Ophthalmology 118(8):1661–1670. CrossRefPubMedGoogle Scholar
  18. 18.
    Hotta K, Nakamura M, Kondo M, Ito S, Terasaki H, Miyake Y, Hida T (2003) Macular dystrophy in a Japanese family with fundus albipunctatus. Am J Ophthalmol 135(6):917–919CrossRefGoogle Scholar
  19. 19.
    Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S (2007) Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol 143(3):463–472. CrossRefPubMedGoogle Scholar
  20. 20.
    Fleckenstein M, Schmitz-Valckenberg S, Martens C, Kosanetzky S, Brinkmann CK, Hageman GS, Holz FG (2011) Fundus autofluorescence and spectral-domain optical coherence tomography characteristics in a rapidly progressing form of geographic atrophy. Invest Ophthalmol Vis Sci 52(6):3761–3766. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fleckenstein M, Schmitz-Valckenberg S, Lindner M, Bezatis A, Becker E, Fimmers R, Holz FG (2014) The “diffuse-trickling” fundus autofluorescence phenotype in geographic atrophy. Invest Ophthalmol Vis Sci 55(5):2911–2920. CrossRefPubMedGoogle Scholar
  22. 22.
    Fleckenstein M, Grassmann F, Lindner M, Pfau M, Czauderna J, Strunz T, von Strachwitz C, Schmitz-Valckenberg S, Holz FG, Weber BH (2016) Distinct genetic risk profile of the rapidly progressing diffuse-trickling subtype of geographic atrophy in age-related macular degeneration (AMD). Invest Ophthalmol Vis Sci 57(6):2463–2471. CrossRefPubMedGoogle Scholar
  23. 23.
    Hayward C, Shu X, Cideciyan AV, Lennon A, Barran P, Zareparsi S, Sawyer L, Hendry G, Dhillon B, Milam AH, Luthert PJ, Swaroop A, Hastie ND, Jacobson SG, Wright AF (2003) Mutation in a short-chain collagen gene, CTRP5, results in extracellular deposit formation in late-onset retinal degeneration: a genetic model for age-related macular degeneration. Hum Mol Genet 12(20):2657–2667. CrossRefPubMedGoogle Scholar
  24. 24.
    Borooah S, Collins C, Wright A, Dhillon B (2009) Late-onset retinal macular degeneration: clinical insights into an inherited retinal degeneration. Br J Ophthalmol 93(3):284–289. CrossRefPubMedGoogle Scholar
  25. 25.
    Jacobson SG, Cideciyan AV, Sumaroka A, Roman AJ, Wright AF (2014) Late-onset retinal degeneration caused by C1QTNF5 mutation: sub-retinal pigment epithelium deposits and visual consequences. JAMA Ophthalmol 132(10):1252–1255. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cukras C, Flamendorf J, Wong WT, Ayyagari R, Cunningham D, Sieving PA (2016) Longitudinal structural changes in late-onset retinal degeneration. Retina 36(12):2348–2356. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Stanton CM, Borooah S, Drake C, Marsh JA, Campbell S, Lennon A, Soares DC, Vallabh NA, Sahni J, Cideciyan AV, Dhillon B, Vitart V, Jacobson SG, Wright AF, Hayward C (2017) Novel pathogenic mutations in C1QTNF5 support a dominant negative disease mechanism in late-onset retinal degeneration. Sci Rep 7(1):12147. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Steinmetz RL, Haimovici R, Jubb C, Fitzke FW, Bird AC (1993) Symptomatic abnormalities of dark adaptation in patients with age-related Bruch’s membrane change. Br J Ophthalmol 77(9):549–554CrossRefGoogle Scholar
  29. 29.
    Jackson GR, Owsley C, McGwin G Jr (1999) Aging and dark adaptation. Vis Res 39(23):3975–3982CrossRefGoogle Scholar
  30. 30.
    Owsley C, Jackson GR, Cideciyan AV, Huang Y, Fine SL, Ho AC, Maguire MG, Lolley V, Jacobson SG (2000) Psychophysical evidence for rod vulnerability in age-related macular degeneration. Invest Ophthalmol Vis Sci 41(1):267–273PubMedGoogle Scholar
  31. 31.
    Owsley C, Jackson GR, White M, Feist R, Edwards D (2001) Delays in rod-mediated dark adaptation in early age-related maculopathy. Ophthalmology 108(7):1196–1202CrossRefGoogle Scholar
  32. 32.
    Flamendorf J, Agron E, Wong WT, Thompson D, Wiley HE, Doss EL, Al-Holou S, Ferris FL 3rd, Chew EY, Cukras C (2015) Impairments in dark adaptation are associated with age-related macular degeneration severity and reticular pseudodrusen. Ophthalmology 122(10):2053–2062. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Owsley C, McGwin G Jr, Clark ME, Jackson GR, Callahan MA, Kline LB, Witherspoon CD, Curcio CA (2016) Delayed rod-mediated dark adaptation is a functional biomarker for incident early age-related macular degeneration. Ophthalmology 123(2):344–351. CrossRefPubMedGoogle Scholar
  34. 34.
    Robson AG, Nilsson J, Li S, Jalali S, Fulton AB, Tormene AP, Holder GE, Brodie SE (2018) ISCEV guide to visual electrodiagnostic procedures. Doc Ophthalmol 136(1):1–26. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fujinami K, Kameya S, Kikuchi S, Ueno S, Kondo M, Hayashi T, Shinoda K, Machida S, Kuniyoshi K, Kawamura Y, Akahori M, Yoshitake K, Katagiri S, Nakanishi A, Sakuramoto H, Ozawa Y, Tsubota K, Yamaki K, Mizota A, Terasaki H, Miyake Y, Iwata T, Tsunoda K (2016) Novel RP1L1 variants and genotype-photoreceptor microstructural phenotype associations in cohort of japanese patients with occult macular dystrophy. Invest Ophthalmol Vis Sci 57(11):4837–4846. CrossRefPubMedGoogle Scholar
  36. 36.
    Nishida T, Sawada A, Mochizuki K, Niwa Y, Hayakawa K (2013) Case of acquired night blindness in a hemodialysis patient. Can J Ophthalmol 48(6):e148–e151. CrossRefPubMedGoogle Scholar
  37. 37.
    Zaharova E, Sherman J (2011) The use of SD-OCT in the differential diagnosis of dots, spots and other white retinal lesions. Eye Brain 3:69–80. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang NK, Chuang LH, Lai CC, Chou CL, Chu HY, Yeung L, Chen YP, Chen KJ, Wu WC, Chen TL, Chao AN, Hwang YS (2012) Multimodal fundus imaging in fundus albipunctatus with RDH5 mutation: a newly identified compound heterozygous mutation and review of the literature. Doc Ophthalmol 125(1):51–62. CrossRefPubMedGoogle Scholar
  39. 39.
    Schatz P, Preising M, Lorenz B, Sander B, Larsen M, Eckstein C, Rosenberg T (2010) Lack of autofluorescence in fundus albipunctatus associated with mutations in RDH5. Retina 30(10):1704–1713. CrossRefPubMedGoogle Scholar
  40. 40.
    Zweifel SA, Spaide RF, Curcio CA, Malek G, Imamura Y (2010) Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology 117(2):303–312. CrossRefPubMedGoogle Scholar
  41. 41.
    Schmitz-Valckenberg S, Steinberg JS, Fleckenstein M, Visvalingam S, Brinkmann CK, Holz FG (2010) Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration. Ophthalmology 117(6):1169–1176. CrossRefPubMedGoogle Scholar
  42. 42.
    Alten F, Heiduschka P, Clemens CR, Eter N (2012) Multifocal electroretinography in eyes with reticular pseudodrusen. Invest Ophthalmol Vis Sci 53(10):6263–6270. CrossRefPubMedGoogle Scholar
  43. 43.
    Alten F, Heiduschka P, Clemens CR, Eter N (2014) Longitudinal structure/function analysis in reticular pseudodrusen. Invest Ophthalmol Vis Sci 55(9):6073–6081. CrossRefPubMedGoogle Scholar
  44. 44.
    Sergouniotis PI, Davidson AE, Mackay DS, Lenassi E, Li Z, Robson AG, Yang X, Kam JH, Isaacs TW, Holder GE, Jeffery G, Beck JA, Moore AT, Plagnol V, Webster AR (2011) Biallelic mutations in PLA2G5, encoding group V phospholipase A2, cause benign fleck retina. Am J Hum Genet 89(6):782–791. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Stone EM, Lotery AJ, Munier FL, Heon E, Piguet B, Guymer RH, Vandenburgh K, Cousin P, Nishimura D, Swiderski RE, Silvestri G, Mackey DA, Hageman GS, Bird AC, Sheffield VC, Schorderet DF (1999) A single EFEMP1 mutation associated with both Malattia Leventinese and Doyne honeycomb retinal dystrophy. Nat Genet 22(2):199–202. CrossRefPubMedGoogle Scholar
  46. 46.
    Haimovici R, Wroblewski J, Piguet B, Fitzke FW, Holder GE, Arden GB, Bird AC (2002) Symptomatic abnormalities of dark adaptation in patients with EFEMP1 retinal dystrophy (Malattia Leventinese/Doyne honeycomb retinal dystrophy). Eye 16(1):7–15. CrossRefPubMedGoogle Scholar
  47. 47.
    Takeuchi T, Hayashi T, Bedell M, Zhang K, Yamada H, Tsuneoka H (2010) A novel haplotype with the R345 W mutation in the EFEMP1 gene associated with autosomal dominant drusen in a Japanese family. Invest Ophthalmol Vis Sci 51(3):1643–1650. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kong M, Yoon J, Ham DI (2018) Electrophysiological function in eyes with reticular pseudodrusen according to fundus distribution. PLoS ONE 13(8):e0203146. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ando R, Saito W, Kanda A, Kase S, Fujinami K, Sugahara M, Nakamura Y, Eguchi S, Mori S, Noda K, Shinoda K, Ishida S (2018) Clinical features of Japanese patients with anti-alpha-enolase antibody-positive autoimmune retinopathy: novel subtype of multiple drusen. Am J Ophthalmol 196:181–196. CrossRefPubMedGoogle Scholar
  50. 50.
    Nguyen CT, Fraser RG, Tan R, Caruso E, Lek JJ, Guymer RH, Luu CD (2018) Longitudinal changes in retinotopic rod function in intermediate age-related macular degeneration. Invest Ophthalmol Vis Sci 59(4):AMD19–AMD24. CrossRefPubMedGoogle Scholar
  51. 51.
    Dimopoulos IS, Tennant M, Johnson A, Fisher S, Freund PR, Sauve Y (2013) Subjects with unilateral neovascular AMD have bilateral delays in rod-mediated phototransduction activation kinetics and in dark adaptation recovery. Invest Ophthalmol Vis Sci 54(8):5186–5195. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kazushige Tsunoda
    • 1
    Email author
  • Kaoru Fujinami
    • 1
    • 2
  • Kazutoshi Yoshitake
    • 3
  • Takeshi Iwata
    • 3
  1. 1.Division of Vision Research, National Institute of Sensory OrgansNational Hospital Organization Tokyo Medical CenterTokyoJapan
  2. 2.UCL Institute of OphthalmologyLondonUK
  3. 3.Division of Molecular and Cellular Biology, National Institute of Sensory OrgansNational Hospital Organization Tokyo Medical CenterTokyoJapan

Personalised recommendations