Retinal dystrophies with bull’s-eye maculopathy along with negative ERGs

  • F. NasserEmail author
  • A. Kurtenbach
  • S. Kohl
  • C. Obermaier
  • K. Stingl
  • E. Zrenner
Original Research Article



The aim of this study was to examine the ophthalmological characteristics and genotypes of patients with congenital retinal pathologies, who display a bull’s-eye maculopathy in the fundus, along with a negative scotopic electroretinogram.


We analysed the results of five patients showing both a bull’s-eye maculopathy, as well as a negative scotopic ERG evoked by a bright flash. Their median age was 39 years (range 11–63 years): three males and two females. All underwent a comprehensive examination with determination of distant visual acuity (ETDRS) and recording of the full-field ERG (scotopic and photopic). Fundus, OCT, and FAF images were obtained, the kinetic visual field was determined, and colour vision (D-15) was tested in most patients. Targeted gene panel sequencing was performed on peripheral blood.


One patient carried a homozygous ABCA4 mutation and an additional heterozygous variant in CRX. Two of the five patients were shown to have a heterozygous mutation in the CRX gene, one of whom had an additional heterozygous ABCA4 mutation. Two patients had the common heterozygous mutation c.2413G>A;p.Arg838His in GUCY2D. In all of the patients, there was a reduction in the amplitude of the b-wave with a regular a-wave amplitude in the scotopic bright-flash ERG.


The five patients with bull’s-eye maculopathy along with a negative ERG had differing genotypes. Mutations were found in the CRX gene (2 patients), the ABCA4 gene (1 patient), and the GUCY2D gene (2 patients).


Phenotype Genotype Bull’s-eye maculopathy Negative ERG 



We thank Dr. Kaoru Fujinami for his assistance.


The study was supported by grants from the German Research Council (DFG Excellence Center EXC307) to EZ, and from the Tistou and Charlotte Kerstan Foundation to FN and AK.

Compliance with ethical standards

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organisation or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Statements of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Written informed consent was obtained from all adult patients and parents/guardians of minors.


  1. 1.
    Kearns TP, Hollenhorst RW (1966) Chloroquine retinopathy: evaluation by fluorescein fundus angiography. Trans Am Ophthalmol Soc 64:217–231Google Scholar
  2. 2.
    Krill AE, Deutman AF (1972) Acute retinal pigment epitheliitus. Am J Ophthalmol 74(2):193–205CrossRefGoogle Scholar
  3. 3.
    Pinckers A, Cruysberg JR, aan de Kerk AL (1984) Main types of bull’s eye maculopathy. Functional classification. Doc Ophthalmol 58(3):257–267CrossRefGoogle Scholar
  4. 4.
    Kurz-Levin MM, Halfyard AS, Bunce C, Bird AC, Holder GE (2002) Clinical variations in assessment of bull’s-eye maculopathy. Arch Ophthalmol 120(5):567–575CrossRefGoogle Scholar
  5. 5.
    Robson AG, Richardson EC, Koh AH, Pavesio CE, Hykin PG, Calcagni A, Graham EM, Holder GE (2005) Unilateral electronegative ERG of non-vascular aetiology. Br J Ophthalmol 89(12):1620–1626. CrossRefGoogle Scholar
  6. 6.
    Miyake Y, Yagasaki K, Horiguchi M, Kawase Y, Kanda T (1986) Congenital stationary night blindness with negative electroretinogram: a new classification. Arch Ophthalmol 104(7):1013–1020CrossRefGoogle Scholar
  7. 7.
    Schubert VG, Bornschein H (1952) Beitrag zur Analyse des menschlichen Elektroretinogramms. Ophthalmol 123:396–413CrossRefGoogle Scholar
  8. 8.
    Faber DS (1969) Analysis of slow transretinal potentials in response to light. In: Ph.D. Thesis, Buffalo, USAGoogle Scholar
  9. 9.
    Knapp AG, Schiller PH (1984) The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys: a study using 2-amino-4-phosphonobutyrate (APB). Vision Res 24(12):1841–1846CrossRefGoogle Scholar
  10. 10.
    Karwoski CJ, Xu X, Yu H (1996) Current-source density analysis of the electroretinogram of the frog: methodological issues and origin of components. J Opt Soc Am 13(3):549–556CrossRefGoogle Scholar
  11. 11.
    Sieving PA (1993) Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773Google Scholar
  12. 12.
    Koh AH, Hogg CR, Holder GE (2001) The incidence of negative ERG in clinical practice. Doc Ophthalmol 102(1):19–30CrossRefGoogle Scholar
  13. 13.
    Renner AB, Kellner U, Cropp E, Foerster MH (2006) Dysfunction of transmission in the inner retina: incidence and clinical causes of negative electroretinogram. Graefes Arch Clin Exp Ophthalmol 244(11):1467–1473. CrossRefGoogle Scholar
  14. 14.
    Deutman AF (1974) Benign concentric annular macular dystrophy. Am J Ophthalmol 78(3):384–396CrossRefGoogle Scholar
  15. 15.
    Miyake Y, Shiroyama N, Horiguchi M, Saito A, Yagasaki K (1989) Bull’s-eye maculopathy and negative electroretinogram. Retina 9(3):210–215CrossRefGoogle Scholar
  16. 16.
    Kellner U, Foerster MH (1993) Cone dystrophies with negative photopic electroretinogram. Br J Ophthalmol 77(7):404–409CrossRefGoogle Scholar
  17. 17.
    Grey RH, Blach RK, Barnard WM (1977) Bull’s eye maculopathy with early cone degeneration. Br J Ophthalmol 61(11):702–718CrossRefGoogle Scholar
  18. 18.
    Kato M, Watanabe I (1990) Bull’s-eye maculopathy, negative electroretinogram and low plasma cyclic guanosine monophosphate level: a report of two cases. Doc Ophthalmol 75(1):23–32CrossRefGoogle Scholar
  19. 19.
    McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130(1):1–12. CrossRefGoogle Scholar
  20. 20.
    McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, Bach M (2015) Erratum to: ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 131(1):81–83. CrossRefGoogle Scholar
  21. 21.
    Glockle N, Kohl S, Mohr J, Scheurenbrand T, Sprecher A, Weisschuh N, Bernd A, Rudolph G, Schubach M, Poloschek C, Zrenner E, Biskup S, Berger W, Wissinger B, Neidhardt J (2014) Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet 22(1):99–104. CrossRefGoogle Scholar
  22. 22.
    Kitiratschky VB, Wilke R, Renner AB, Kellner U, Vadala M, Birch DG, Wissinger B, Zrenner E, Kohl S (2008) Mutation analysis identifies GUCY2D as the major gene responsible for autosomal dominant progressive cone degeneration. Invest Ophthalmol Vis Sci 49(11):5015–5023. CrossRefGoogle Scholar
  23. 23.
    Zobor D, Zrenner E, Wissinger B, Kohl S, Jagle H (2014) GUCY2D- or GUCA1A-related autosomal dominant cone-rod dystrophy: is there a phenotypic difference? Retina 34(8):1576–1587. CrossRefGoogle Scholar
  24. 24.
    Rivera A, White K, Stohr H, Steiner K, Hemmrich N, Grimm T, Jurklies B, Lorenz B, Scholl HP, Apfelstedt-Sylla E, Weber BH (2000) A comprehensive survey of sequence variation in the ABCA4 (ABCR) gene in Stargardt disease and age-related macular degeneration. Am J Hum Genet 67(4):800–813. CrossRefGoogle Scholar
  25. 25.
    Payne AM, Morris AG, Downes SM, Johnson S, Bird AC, Moore AT, Bhattacharya SS, Hunt DM (2001) Clustering and frequency of mutations in the retinal guanylate cyclase (GUCY2D) gene in patients with dominant cone-rod dystrophies. J Med Genet 38(9):611–614CrossRefGoogle Scholar
  26. 26.
    Heckenlively JR, Arden GB (2006) Principles and practice of clinical electrophysiology of vision, 2nd edn. MIT Press Ltd, CambridgeCrossRefGoogle Scholar
  27. 27.
    Kitiratschky VB, Nagy D, Zabel T, Zrenner E, Wissinger B, Kohl S, Jagle H (2008) Cone and cone-rod dystrophy segregating in the same pedigree due to the same novel CRX gene mutation. Br J Ophthalmol 92(8):1086–1091. CrossRefGoogle Scholar
  28. 28.
    Sohocki MM, Sullivan LS, Mintz-Hittner HA, Birch D, Heckenlively JR, Freund CL, McInnes RR, Daiger SP (1998) A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am J Hum Genet 63(5):1307–1315. CrossRefGoogle Scholar
  29. 29.
    Michaelides M, Chen LL, Brantley MA Jr, Andorf JL, Isaak EM, Jenkins SA, Holder GE, Bird AC, Stone EM, Webster AR (2007) ABCA4 mutations and discordant ABCA4 alleles in patients and siblings with bull’s-eye maculopathy. Br J Ophthalmol 91(12):1650–1655. CrossRefGoogle Scholar
  30. 30.
    Cella W, Greenstein VC, Zernant-Rajang J, Smith TR, Barile G, Allikmets R, Tsang SH (2009) G1961E mutant allele in the Stargardt disease gene ABCA4 causes bull’s eye maculopathy. Exp Eye Res 89(1):16–24. CrossRefGoogle Scholar
  31. 31.
    Noupuu K, Lee W, Zernant J, Greenstein VC, Tsang S, Allikmets R (2016) Recessive Stargardt disease phenocopying hydroxychloroquine retinopathy. Graefes Arch Clin Exp Ophthalmol 254(5):865–872. CrossRefGoogle Scholar
  32. 32.
    Jimenez-Rolando B, Noval S, Rosa-Perez I, Mata Diaz E, Del Pozo A, Ibanez C, Silla JC, Montano VEF, Martin-Arenas R, Vallespin E (2017) Next generation sequencing in the diagnosis of Stargardt’s disease. Arch Soc Esp Oftalmol. 1:1–9. Google Scholar
  33. 33.
    Fujinami K, Lois N, Mukherjee R, McBain VA, Tsunoda K, Tsubota K, Stone EM, Fitzke F, Bunce C, Moore AT, Webster AR, Michaelides M (2013) A longitudinal study of Stargardt disease: quantitative assessment of fundus autofluorescence, progression and genotype correlations. Invest Ophthalmol Vis Sci. Google Scholar
  34. 34.
    Khan KN, Kasilian M, Mahroo OAR, Tanna P, Kalitzeos A, Robson AG, Tsunoda K, Iwata T, Moore AT, Fujinami K, Michaelides M (2018) Early patterns of macular degeneration in ABCA4-associated retinopathy. Ophthalmol 125(5):735–746. CrossRefGoogle Scholar
  35. 35.
    Kitiratschky VB, Grau T, Bernd A, Zrenner E, Jagle H, Renner AB, Kellner U, Rudolph G, Jacobson SG, Cideciyan AV, Schaich S, Kohl S, Wissinger B (2008) ABCA4 gene analysis in patients with autosomal recessive cone and cone rod dystrophies. Eur J Hum Genet 16(7):812–819. CrossRefGoogle Scholar
  36. 36.
    Aguirre GK, Butt OH, Datta R, Roman AJ, Sumaroka A, Schwartz SB, Cideciyan AV, Jacobson SG (2017) Postretinal structure and function in severe congenital photoreceptor blindness caused by mutations in the GUCY2D gene. Invest Ophthalmol Vis Sci 58(2):959–973. CrossRefGoogle Scholar
  37. 37.
    Sieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M (1995) Dark-light: model for nightblindness from the human rhodopsin Gly-90–>Asp mutation. Proc Natl Acad Sci USA 92(3):880–884CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for OphthalmologyUniversity of TuebingenTübingenGermany
  2. 2.Werner Reichardt Centre for Integrative Neuroscience (CIN)University of TübingenTübingenGermany
  3. 3.Praxis fuer Humangenetik TübingenTübingenGermany
  4. 4.University Eye HospitalTübingenGermany

Personalised recommendations