Documenta Ophthalmologica

, Volume 134, Issue 3, pp 157–165 | Cite as

Test–retest reliability of scotopic full-field electroretinograms in rabbits

Original Research Article
  • 128 Downloads

Abstract

Purpose

To explore test–retest reliability of standard scotopic full-field ERG measurements in New Zealand White rabbits. The ERG is widely used for testing of retinal integrity after any ocular treatment. We here present detailed stimulus–response dependencies for single healthy and untreated animals, concentrating on test–retest reproducibility.

Materials and methods

Five New Zealand White rabbits (aged 8–10 weeks, weight about 2.0–2.5 kg) underwent binocular ERG measurements after intramuscular anesthesia and pharmaceutical pupillary dilatation at a baseline day and 10 days later. Eleven scotopic flash strengths (0.0001–10 cd s/m2) were presented. Variability was quantified via the 95% limits of agreement (LOA).

Results

The a-waves displayed the typical monotonic sigmoid amplitude increase with flash strength, and the b-waves peaked at 0.01 cd s/m2, followed by a marked dip at 0.1–0.3 cd s/m2. LOA of both waves went through a maximum in the dip region. LOA divided by mean amplitudes (relative LOA) was fairly flat over flash strength, around 20% beyond the dip. Intraindividual interocular variability was markedly lower, around 10%.

Conclusions

Scotopic ERG responses in rabbits display a region of high variability at 0.1–0.3 cd s/m2; beyond that region the amplitude-LOA is 20%, the interocular LOA being half that value. The use of intraindividual control eyes for testing any toxicity of ocular agents thus appears markedly more sensitive. As a rule of thumb, we found the relative 95% LOA as 33% between individuals, 20% across sessions and 10% between eyes.

Keywords

ERG Rabbits Test–retest reliability 

References

  1. 1.
    McCulloch DL, Marmor MF, Brigell MG et al (2015) ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 130:1–12. doi:10.1007/s10633-014-9473-7 CrossRefPubMedGoogle Scholar
  2. 2.
    McCulloch DL, Marmor MF, Brigell MG et al (2015) Erratum to: ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 131:81–83. doi:10.1007/s10633-015-9504-z CrossRefPubMedGoogle Scholar
  3. 3.
    Lachapelle P, Benoit J, Guité P et al (1990) The effect of iodoacetic acid on the electroretinogram and oscillatory potentials in rabbits. Doc Ophthalmol 75:7–14CrossRefPubMedGoogle Scholar
  4. 4.
    Bush RA, Lei B, Tao W et al (2004) Encapsulated cell-based intraocular delivery of ciliary neurotrophic factor in normal rabbit: dose-dependent effects on erg and retinal histology. Investig Opthalmol Vis Sci 45:2420. doi:10.1167/iovs.03-1342 CrossRefGoogle Scholar
  5. 5.
    Afrashi F, Hashas ASK, Shahbazov C et al (2015) Reliability of intravitreal nepafenac in rabbits. J Ocul Pharmacol Ther 31:43–50. doi:10.1089/jop.2014.0053 CrossRefPubMedGoogle Scholar
  6. 6.
    Gasparin F, Aguiar RG, Ioshimoto GL et al (2014) Pharmacokinetics, electrophysiological, and morphological effects of the intravitreal injection of mycophenolic acid in rabbits. J Ocul Pharmacol Ther 30:502–511. doi:10.1089/jop.2013.0236 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ofri R (2002) Clinical electrophysiology in veterinary ophthalmology—the past, present and future. Doc Ophthalmol 104:5–16CrossRefPubMedGoogle Scholar
  8. 8.
    Bayer AU, Cook P, Brodie SE et al (2001) Evaluation of different recording parameters to establish a standard for flash electroretinography in rodents. Vis Res 41:2173–2185. doi:10.1016/S0042-6989(01)00103-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Gjörloff K, Andréasson S, Ehinger B (2004) Standardized full-field electroretinography in rabbits. Doc Ophthalmol 109:163–168CrossRefPubMedGoogle Scholar
  10. 10.
    Rosolen SG, Rigaudière F, LeGargasson J-F et al (2004) Comparing the photopic ERG i-wave in different species. Vet Ophthalmol 7:189–192CrossRefPubMedGoogle Scholar
  11. 11.
    Gorfinkel J, Lachapelle P, Molotchnikoff S (1988) Maturation of the electroretinogram of the neonatal rabbit. Doc Ophthalmol 69:237–245CrossRefPubMedGoogle Scholar
  12. 12.
    Damico FM, Scolari MR, Ioshimoto GL et al (2012) Vitreous pharmacokinetics and electroretinographic findings after intravitreal injection of acyclovir in rabbits. Clinics (Sao Paulo) 67:931–937. doi:10.6061/clinics/2012(08)13 CrossRefGoogle Scholar
  13. 13.
    Kim SJ, Toma H, Shah R et al (2014) The safety, pharmacokinetics, and efficacy of intraocular celecoxibintraocular celecoxib. Investig Ophthalmol Vis Sci 55:1409–1418. doi:10.1167/iovs.13-13667 CrossRefGoogle Scholar
  14. 14.
    Myers AC, Ghosh F, Andréasson S, Ponjavic V (2014) Retinal function and morphology in the rabbit eye after intravitreal injection of the TNF alpha inhibitor adalimumab. Curr Eye Res 39:1106. doi:10.3109/02713683.2014.898309 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    ARVO Statement for the Use of Animals in Ophthalmic and Visual Research. http://www.arvo.org/about_arvo/policies/statement_for_the_use_of_animals_in_ophthalmic_and_visual_research/. Accessed 30 Oct 2016
  16. 16.
    Bach M (2007) What a good electrophysiology system should look like, IMHO. ISCEV@ARVOGoogle Scholar
  17. 17.
    R Development Core Team (2014) R: a language and environment for statistical computing. http://www.R-project.org. Accessed 18 Aug 2014
  18. 18.
    Stahl A, Feltgen N, Fuchs A, Bach M (2009) Electrophysiological evaluation of retinal photoreceptor function after repeated bevacizumab injections. Doc Ophthalmol 118:81–88. doi:10.1007/s10633-008-9136-7 CrossRefPubMedGoogle Scholar
  19. 19.
    Smith BJ, Wang X, Chauhan BC et al (2014) Contribution of retinal ganglion cells to the mouse electroretinogram. Doc Ophthalmol 128:155–168. doi:10.1007/s10633-014-9433-2 CrossRefPubMedGoogle Scholar
  20. 20.
    Jaffe MJ, Hommer DW, Caruso RC et al (1989) Attenuating effects of diazepam on the electroretinogram of normal humans. Retina (Philadelphia, PA) 9:216–225CrossRefGoogle Scholar
  21. 21.
    Perlman I (2009) Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques. Doc Ophthalmol 118:3. doi:10.1007/s10633-008-9153-6 CrossRefPubMedGoogle Scholar
  22. 22.
    Bouskila J, Javadi P, Palmour RM et al (2014) Standardized full-field electroretinography in the Green Monkey (Chlorocebus sabaeus). PLoS ONE. doi:10.1371/journal.pone.0111569 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Della Santina L, Piano I, Cangiano L et al (2012) Processing of retinal signals in normal and HCN deficient mice. PLoS ONE. doi:10.1371/journal.pone.0029812 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Weymouth AE, Vingrys AJ (2008) Rodent electroretinography: methods for extraction and interpretation of rod and cone responses. Prog Retin Eye Res 27:1–44. doi:10.1016/j.preteyeres.2007.09.003 CrossRefPubMedGoogle Scholar
  25. 25.
    Peachey NS, Alexander KR, Fishman GA (1989) The luminance-response function of the dark-adapted human electroretinogram. Vis Res 29:263–270. doi:10.1016/0042-6989(89)90075-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Wu SM (2010) Synaptic organization of the vertebrate retina: general principles and species-specific variations. Investig Ophthalmol Vis Sci 51:1264–1274. doi:10.1167/iovs.09-4396 CrossRefGoogle Scholar
  27. 27.
    Seeliger MW, Brombas A, Weiler R et al (2011) Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision. Nat Commun 2:532. doi:10.1038/ncomms1540 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Eye Center, Medical CenterUniversity of FreiburgFreiburgGermany
  2. 2.Faculty of MedicineUniversity of FreiburgFreiburgGermany

Personalised recommendations