Documenta Ophthalmologica

, Volume 133, Issue 3, pp 171–181 | Cite as

Electrophysiological testing of visual function after mirror telescope implantation: a case report

  • Jan Kremláček
  • Naďa Jirásková
  • Jana Nekolová
  • Radovan Šikl
  • Miroslav Kuba
Clinical Case Report

Abstract

Purpose

The implantation of an intraocular telescope increases life quality in patients with end-stage age-related macular degeneration (AMD). The present study monitored changes in electrophysiological markers of visual processing before and during seventeen months after a novel mirror telescope implantation in two patients (OV—male 90 years, MZ—female 70 years) with the final-stage form of AMD.

Methods

Visual evoked potentials were recorded to high-contrast pattern-reversal (PR-VEP for check size 40′ and 10′), low-contrast motion-onset stimuli (in visual periphery M-VEP M20°, and in central part M-VEP C8°), and event-related potentials (ERPs) in the oddball visual paradigm.

Results

MZ’s more systematic responses showed attenuation and prolongation of the M-VEP M20° and the PR-VEP 40′ immediately after the telescope implantation with a slow amplitude recovery with unchanged prolonged latency. The implantation completely eradicated the M-VEP C8° without any restoration. The PR-VEP 10′ were not readable. Only a part of OV’s PR-VEP 40′ and M-VEP M20′ were of a repeatable and expected morphology. These OV’s VEPs were consistent with MZ’s findings. The ERPs did not show any effect of implantation in both patients. Post-implantation visual acuity and reaction time overcame the pre-implantation levels.

Conclusions

The mirror telescope preserved peripheral vision in contrast to classic telescopes; however, the telescope concurrently reduced the luminance of the magnified retinal image, which was likely responsible for the prolongation of the VEP latencies.

Keywords

Intraocular mirror telescope Age-related macular degeneration Motion-onset VEPs Pattern-reversal VEPs Oddball ERPs P3b 

Abbreviations

LMI

Lipshitz macular implant—intraocular mirror telescope OriLens

AMD

Age-related macular degeneration

CNV

Choroidal neovascularization

VEP

Visual evoked potential

ERP

Event-related potential

PR-VEP

Pattern-reversal VEP

PR-VEP 40′

PR-VEP evoked by checkerboard of 40′ checks

PR-VEP 10′

PR-VEP evoked by checkerboard of 10′ checks

M-VEP

Motion-onset VEP

M-VEP C8°

M-VEP evoked by central 8° stimulus

M-VEP M20°

M-VEP evoked by peripheral stimulus outside central 20°

Supplementary material

10633_2016_9563_MOESM1_ESM.pdf (194 kb)
Supplementary material 1 Supplementary Fig. A The small image in the upper left corner depicts the intraocular mirror telescope. The larger photo shows the insertion of the telescope through a corneal incision into the anterior chamber (PDF 194 kb)
10633_2016_9563_MOESM2_ESM.pdf (473 kb)
Supplementary material 2 Supplementary Fig. B An estimative illustration of a perceived visual scene using the LMI in an AMD patient. The original scene on the left (as may be observed by a healthy observer) is in the central part disturbed by illness such as AMD (shown in the middle picture). The right picture shows the image amplified by the LMI with preserved peripheral vision. However, this picture is also darker because the luminance of the projected central retinal image is reduced (PDF 473 kb)

References

  1. 1.
    Lim LS, Mitchell P, Seddon JM et al (2012) Age-related macular degeneration. Lancet 379:1728–1738. doi:10.1016/S0140-6736(12)60282-7 CrossRefPubMedGoogle Scholar
  2. 2.
    Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618. doi:10.1136/bjophthalmol-2011-300539 CrossRefPubMedGoogle Scholar
  3. 3.
    Miller JW (2013) Age-related macular degeneration revisited–piecing the puzzle: the LXIX Edward Jackson memorial lecture. Am J Ophthalmol 155(1–35):e13. doi:10.1016/j.ajo.2012.10.018 Google Scholar
  4. 4.
    Singer MA, Amir N, Herro A et al (2012) Improving quality of life in patients with end-stage age-related macular degeneration: focus on miniature ocular implants. Clin Ophthalmol 6:33–39. doi:10.2147/OPTH.S15028 PubMedGoogle Scholar
  5. 5.
    Brown GC, Brown MM, Lieske HB et al (2011) Comparative effectiveness and cost-effectiveness of the implantable miniature telescope. Ophthalmology 118:1834–1843. doi:10.1016/j.ophtha.2011.02.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Boyer D, Freund KB, Regillo C et al (2015) Long-term (60-month) results for the implantable miniature telescope: efficacy and safety outcomes stratified by age in patients with end-stage age-related macular degeneration. Clin Ophthalmol. doi:10.2147/OPTH.S86208 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Hudson HL, Stulting RD, Heier JS et al (2008) Implantable telescope for end-stage age-related macular degeneration: long-term visual acuity and safety outcomes. Am J Ophthalmol. doi:10.1016/j.ajo.2008.07.003 PubMedGoogle Scholar
  8. 8.
    Agarwal A, Lipshitz I, Jacob S et al (2008) Mirror telescopic intraocular lens for age-related macular degeneration: design and preliminary clinical results of the Lipshitz macular implant. J Cataract Refract Surg 34:87–94. doi:10.1016/j.jcrs.2007.08.031 CrossRefPubMedGoogle Scholar
  9. 9.
    Odom JV, Bach M, Brigell M et al (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120:111–119. doi:10.1007/s10633-009-9195-4 CrossRefPubMedGoogle Scholar
  10. 10.
    Duncan CC, Barry RJ, Connolly JF et al (2009) Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin Neurophysiol 120:1883–1908CrossRefPubMedGoogle Scholar
  11. 11.
    Sabeti F, James AC, Essex RW, Maddess T (2013) Dichoptic multifocal visual evoked potentials identify local retinal dysfunction in age-related macular degeneration. Doc Ophthalmol 126:125–136. doi:10.1007/s10633-012-9366-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Bodis-Wollner I, Feldman RG, Guillory SL, Mylin L (1987) Delayed visual evoked potentials are independent of pattern orientation in macular disease. Electroencephalogr Clin Neurophysiol Evoked Potentials 68:172–179. doi:10.1016/0168-5597(87)90024-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Vottonen P, Kaarniranta K, Pääkkönen A, Tarkka IM (2013) Changes in neurophysiologic markers of visual processing following beneficial anti-vegf treatment in macular degeneration. Clin Ophthalmol 7:437–442. doi:10.2147/OPTH.S40427 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Vottonen P, Pääkkönen A, Tarkka IM, Kaarniranta K (2015) Best-corrected visual acuity and retinal thickness are associated with improved cortical visual processing in treated wet AMD patients. Acta Ophthalmol 93:621–625. doi:10.1111/aos.12774 CrossRefPubMedGoogle Scholar
  15. 15.
    Macky TA, Mahgoub MM (2012) Electrophysiological assessment of optic nerve and retinal functions following intravitreal injection of bevacizumab (avastin). J Ocul Pharmacol Ther 28:159–165. doi:10.1089/jop.2011.0141 CrossRefPubMedGoogle Scholar
  16. 16.
    Odom JV, Bach M, Barber C et al (2004) Visual evoked potentials standard (2004). Doc Ophthalmol 108:115–123CrossRefPubMedGoogle Scholar
  17. 17.
    Heinrich SP (2007) A primer on motion visual evoked potentials. Doc Ophthalmol 114:83–105. doi:10.1007/s10633-006-9043-8 CrossRefPubMedGoogle Scholar
  18. 18.
    Kuba M, Kubova Z, Kremláček J, Langrova J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47:189–202CrossRefPubMedGoogle Scholar
  19. 19.
    Bach M (2007) The freiburg visual acuity test-variability unchanged by post hoc re-analysis. Graefes Arch Clin Exp Ophthalmol 245:965–971. doi:10.1007/s00417-006-0474-4 CrossRefPubMedGoogle Scholar
  20. 20.
    Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436CrossRefPubMedGoogle Scholar
  21. 21.
    Kremláček J, Kuba M (1999) Global brain dynamics of transient visual evoked potentials. Physiol Res 48:303–308PubMedGoogle Scholar
  22. 22.
    Kremláček J, Kuba M, Kubova Z, Chlubnova J (2004) Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol 109:169–175CrossRefPubMedGoogle Scholar
  23. 23.
    Reeves BC, Harper RA, Russell WB (2004) Enhanced low vision rehabilitation for people with age related macular degeneration: a randomised controlled trial. Br J Ophthalmol 88:1443–1449. doi:10.1136/bjo.2003.037457 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hooper P, Jutai JW, Strong G, Russell-Minda E (2008) Age-related macular degeneration and low-vision rehabilitation: a systematic review. Can J Ophthalmol 43:180–187. doi:10.3129/i08-001 CrossRefPubMedGoogle Scholar
  25. 25.
    Lane SS, Kuppermann BD (2006) The implantable miniature telescope for macular degeneration. Curr Opin Ophthalmol 17:94–98. doi:10.1097/01.icu.0000193067.86627.a1 CrossRefPubMedGoogle Scholar
  26. 26.
    Lane SS, Kuppermann BD, Fine IH et al (2004) A prospective multicenter clinical trial to evaluate the safety and effectiveness of the implantable miniature telescope. Am J Ophthalmol 137:993–1001. doi:10.1016/j.ajo.2004.01.030 CrossRefPubMedGoogle Scholar
  27. 27.
    Alió JL, Mulet EM, José M et al (2004) Intraocular telescopic lens evaluation in patients with age-related macular degeneration. J Cataract Refract Surg 30:1177–1189. doi:10.1016/j.jcrs.2003.10.038 CrossRefPubMedGoogle Scholar
  28. 28.
    Hudson HL, Lane SS, Heier JS et al (2006) Implantable miniature telescope for the treatment of visual acuity loss resulting from end-stage age-related macular degeneration: 1-year results. Ophthalmology 113:1987–2001. doi:10.1016/j.ophtha.2006.07.010 CrossRefPubMedGoogle Scholar
  29. 29.
    Primo SA (2010) Implantable miniature telescope: lessons learned. Optometry 81:86–93. doi:10.1016/j.optm.2009.08.014 CrossRefPubMedGoogle Scholar
  30. 30.
    Kaşkaloğlu M, Üretmen Ö, Yağcı A (2001) Medium-term results of implantable miniaturized telescopes in eyes with age-related macular degeneration. J Cataract Refract Surg 27:1751–1755. doi:10.1016/S0886-3350(01)00976-2 CrossRefPubMedGoogle Scholar
  31. 31.
    Cant BR, Hume AL, Shaw NA (1978) Effects of luminance on the pattern visual evoked potential in multiple sclerosis. Electroencephalogr Clin Neurophysiol 45:496–504CrossRefPubMedGoogle Scholar
  32. 32.
    Török B, Meyer M, Wildberger H (1992) The influence of pattern size on amplitude, latency and wave form of retinal and cortical potentials elicited by checkerboard pattern reversal and stimulus onset-offset. Electroencephalogr Clin Neurophysiol Potentials Sect 84:13–19. doi:10.1016/0168-5597(92)90063-H CrossRefGoogle Scholar
  33. 33.
    Kubová Z, Kremláček J, Kuba M et al (2004) Photopic and scotopic VEPs in patients with congenital stationary night-blindness. Doc Ophthalmol 109:9–15. doi:10.1007/s10633-004-2435-8 PubMedGoogle Scholar
  34. 34.
    Hengerer FH, Artal P, Kohnen T, Conrad-Hengerer I (2015) Initial clinical results of a new telescopic IOL implanted in patients with dry age-related macular degeneration. J Refract Surg 31:158–162. doi:10.3928/1081597X-20150220-03 CrossRefPubMedGoogle Scholar
  35. 35.
    Scharioth GB (2015) New add-on intraocular lens for patients with age-related macular degeneration. J Cataract Refract Surg 41:1559–1563. doi:10.1016/j.jcrs.2015.07.018 CrossRefPubMedGoogle Scholar
  36. 36.
    Tabernero J, Qureshi MA, Robbie SJ, Artal P (2015) An aspheric intraocular telescope for age-related macular degeneration patients. Biomed Opt Express 6:1010. doi:10.1364/BOE.6.001010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Pathological Physiology, Faculty of Medicine in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
  2. 2.Department of Ophthalmology, Faculty of Medicine in Hradec KrálovéUniversity Hospital and Charles UniversityPragueCzech Republic
  3. 3.Institute of PsychologyAcademy of SciencesBrnoCzech Republic

Personalised recommendations