Documenta Ophthalmologica

, Volume 131, Issue 2, pp 137–148 | Cite as

Objective measurement of visual resolution using the P300 to self-facial images

  • David J. MarhöferEmail author
  • Michael Bach
  • Sven P. Heinrich
Original Research Article



To assess visual acuity objectively “beyond V1”, the P300 event-related potential is a promising candidate and closely associated with conscious perception. However, the P300 can be willfully modulated, a disadvantage for objective visual acuity estimation. Faces are very salient stimuli and difficult to ignore. Here, we present a P300-type paradigm to assess visual acuity with faces.


Gray-scale portraits of the respective subject served as oddball stimuli (probability 1/7), scrambled versions of these as the standard stimuli (probability 6/7). Furthermore, stimuli were spatially high-pass filtered (at 0, 2.2, 4.2 and 8.3 cpd), making them recognizable only with sufficient acuity. Acuity was systematically reduced by dioptric blur, chosen individually to render faces unrecognizable when high-passed at ≥ 4.2 cpd. EEG was recorded from 11 subjects at 32 scalp positions and re-referenced to the average of TP9 and TP10. One of the rare face variants was designated as target, for which a button had to be pressed.


The event-related potential was dominated by the P300 at 300–800 ms. All subjects had a significant (P < 0.05) P300 for 0- to 8.3-cpd filtering. When vision was blurred, the fraction of significant P300 responses to 8.3-cpd filtered faces dropped to 18 %, but stayed at 100 % for 4.2 cpd. Another component, the vertex positive potential (VPP) at 170 ms, was undetectable in most participants with blur and all levels of filtering, even when the images were recognizable.


The study demonstrates the feasibility of a face-based P300 approach to objectively assess visual acuity. The sensitivity to stimulus degradation was comparable to that of a grating-based approach as previously reported. An unexpected finding was the differing behavior of the P300 and the VPP. The VPP was quite sensitive to high-pass filtering, while the P300 sustained stronger filtering, although for its generation, the faces must also be discriminated from scrambled faces.


Visual acuity P300 Attention ERP Face Malingering Spatial frequency Objective testing 



This study was supported by the Deutsche Forschungsgemeinschaft (BA 877/18 and BA 877/21). We are grateful to our subjects for their participation.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Supplementary material

10633_2015_9502_MOESM1_ESM.pdf (491 kb)
Online Resource1 Target oddball stimuli spatially high-pass filtered with four different cutoff frequencies (0.0, 2.2, 4.2 and 8.3) (PDF 490 kb)


  1. 1.
    Howard JE, Dorfman LJ (1986) Evoked potentials in hysteria and malingering. J Clin Neurophysiol 3:39–49CrossRefPubMedGoogle Scholar
  2. 2.
    Villegas RB, Ilsen PF (2007) Functional vision loss: a diagnosis of exclusion. Optometry 78:523–533. doi: 10.1016/j.optm.2007.04.098 CrossRefPubMedGoogle Scholar
  3. 3.
    Towle VL, Harter MR (1977) Objective determination of human visual acuity: pattern evoked potentials. Invest Ophthalmol Vis Sci 16:1073–1076PubMedGoogle Scholar
  4. 4.
    Teping C (1981) Determination of visual acuity by the visually evoked cortical potential (author’s transl). Klin Monbl Augenheilkd 179:169–172. doi: 10.1055/s-2008-1057284 CrossRefPubMedGoogle Scholar
  5. 5.
    Odom JV, Hoyt CS, Marg E (1981) Effect of natural deprivation and unilateral eye patching on visual acuity of infants and children. Evoked potential measurements. Arch Ophthalmol 99:1412–1416CrossRefPubMedGoogle Scholar
  6. 6.
    Röver J, Bach M (1987) Pattern electroretinogram plus visual evoked potential: a decisive test in patients suspected of malingering. Doc Ophthalmol 66:245–251CrossRefPubMedGoogle Scholar
  7. 7.
    Nakamura A, Akio T, Matsuda E, Wakami Y (2001) Pattern visual evoked potentials in malingering. J Neuroophthalmol 21:42–45CrossRefPubMedGoogle Scholar
  8. 8.
    McBain VA, Robson AG, Hogg CR, Holder GE (2007) Assessment of patients with suspected non-organic visual loss using pattern appearance visual evoked potentials. Graefes Arch Clin Exp Ophthalmol 245:502–510. doi: 10.1007/s00417-006-0431-2 CrossRefPubMedGoogle Scholar
  9. 9.
    Bach M, Maurer JP, Wolf ME (2008) Visual evoked potential-based acuity assessment in normal vision, artificially degraded vision, and in patients. Br J Ophthalmol 92:396–403. doi: 10.1136/bjo.2007.130245 CrossRefPubMedGoogle Scholar
  10. 10.
    Mackay AM, Bradnam MS, Hamilton R, Elliot AT, Dutton GN (2008) Real-time rapid acuity assessment using VEPs: development and validation of the step VEP technique. Invest Ophthalmol Vis Sci 49:438–441. doi: 10.1167/iovs.06-0944 CrossRefPubMedGoogle Scholar
  11. 11.
    Almoqbel F, Leat SJ, Irving E (2008) The technique, validity and clinical use of the sweep VEP. Ophthalmic Physiol Opt 28:393–403. doi: 10.1111/j.1475-1313.2008.00591.x CrossRefPubMedGoogle Scholar
  12. 12.
    Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2002) Cortical sources of the early components of the visual evoked potential. Human Brain Mapp 15:95–111CrossRefGoogle Scholar
  13. 13.
    Jiraskova N, Kuba M, Kremlacek J, Rozsival P (2011) Normal sensory and absent cognitive electrophysiological responses in functional visual loss following chemical eye burn. Doc Ophthalmol 123:51–57. doi: 10.1007/s10633-011-9275-0 CrossRefPubMedGoogle Scholar
  14. 14.
    Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150:1187–1188CrossRefPubMedGoogle Scholar
  15. 15.
    Linden DEJ (2005) The p300: where in the brain is it produced and what does it tell us? Neuroscientist 11:563–576. doi: 10.1177/1073858405280524 CrossRefPubMedGoogle Scholar
  16. 16.
    Katayama J, Polich J (1999) Auditory and visual P300 topography from a 3 stimulus paradigm. Clin Neurophysiol 110:463–468CrossRefPubMedGoogle Scholar
  17. 17.
    Picton TW (1992) The P300 wave of the human event-related potential. J Clin Neurophysiol 9:456–479CrossRefPubMedGoogle Scholar
  18. 18.
    Duncan-Johnson CC, Donchin E (1977) On quantifying surprise: the variation of event-related potentials with subjective probability. Psychophysiology 14:456–467CrossRefPubMedGoogle Scholar
  19. 19.
    Rosenfeld JP, Biroschak JR, Kleschen MJ, Smith KM (2005) Subjective and objective probability effects on P300 amplitude revisited. Psychophysiology 42:356–359. doi: 10.1111/j.1469-8986.2005.00283.x CrossRefPubMedGoogle Scholar
  20. 20.
    Gratton G, Bosco CM, Kramer AF, Coles MG, Wickens CD, Donchin E (1990) Event-related brain potentials as indices of information extraction and response priming. Electroencephalogr Clin Neurophysiol 75:419–432CrossRefPubMedGoogle Scholar
  21. 21.
    Sangal B, Sangal JM (1996) Topography of auditory and visual P300 in normal adults. Clin Electroencephalogr 27:145–150CrossRefPubMedGoogle Scholar
  22. 22.
    Fein G, Turetsky B (1989) P300 latency variability in normal elderly: effects of paradigm and measurement technique. Electroencephalogr Clin Neurophysiol 72:384–394CrossRefPubMedGoogle Scholar
  23. 23.
    Ramachandran G, Porjesz B, Begleiter H, Litke A (1996) A simple auditory oddball task in young adult males at high risk for alcoholism. Alcohol Clin Exp Res 20:9–15CrossRefPubMedGoogle Scholar
  24. 24.
    Barrett G, Neshige R, Shibasaki H (1987) Human auditory and somatosensory event-related potentials: effects of response condition and age. Electroencephalogr Clin Neurophysiol 66:409–419CrossRefPubMedGoogle Scholar
  25. 25.
    Soltani M, Knight RT (2000) Neural origins of the P300. Crit Rev Neurobiol 14:199–224CrossRefPubMedGoogle Scholar
  26. 26.
    Polich J (2003) Theoretical Overview of P3a and P3b. In: Polich J (ed) Detection of Change. Springer, US, pp 83–98CrossRefGoogle Scholar
  27. 27.
    Polich J (2004) Neuropsychology of P3a and P3b: a theoretical overview. Brainwaves and mind: recent developments. Kjellberg, Wheaton, pp 15–29Google Scholar
  28. 28.
    Hansenne M (2000) Le potentiel évoqué cognitif P300 (I): aspects théorique et psychobiologique. Neurophysiol Clin 30:191–210CrossRefPubMedGoogle Scholar
  29. 29.
    Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148. doi: 10.1016/j.clinph.2007.04.019 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Towle VL, Sutcliffe E, Sokol S (1985) Diagnosing functional visual deficits with the P300 component of the visual evoked potential. Arch Ophthalmol 103:47–50CrossRefPubMedGoogle Scholar
  31. 31.
    Lorenz J, Kunze K, Bromm B (1998) Differentiation of conversive sensory loss and malingering by P300 in a modified oddball task. NeuroReport 9:187–191CrossRefPubMedGoogle Scholar
  32. 32.
    Heinrich SP, Marhöfer D, Bach M (2010) “Cognitive” visual acuity estimation based on the event-related potential P300 component. Clin Neurophysiol 121:1464–1472. doi: 10.1016/j.clinph.2010.03.030 CrossRefPubMedGoogle Scholar
  33. 33.
    Heinrich SP, Lüth I, Bach M (2015) Event-related potentials allow for optotype-based objective acuity estimation. Invest Ophthalmol Vis Sci 56:2184–2191. doi: 10.1167/iovs.14-16228 CrossRefPubMedGoogle Scholar
  34. 34.
    Bargh JA (1982) Attention and automaticity in the processing of self-relevant information. J Personal Soc Psychol 43:425–436. doi: 10.1037/0022-3514.43.3.425 CrossRefGoogle Scholar
  35. 35.
    Becker DE, Shapiro D (1980) Directing attention toward stimuli affects the P300 but not the orienting response. Psychophysiology 17:385–389. doi: 10.1111/j.1469-8986.1980.tb00168.x CrossRefPubMedGoogle Scholar
  36. 36.
    Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75:511–527CrossRefPubMedGoogle Scholar
  37. 37.
    Polich J, Kok A (1995) Cognitive and biological determinants of P300: an integrative review. Biol Psychol 41:103–146CrossRefPubMedGoogle Scholar
  38. 38.
    Polich J, Corey-Bloom J (2005) Alzheimer’s disease and P300: review and evaluation of task and modality. Curr Alzheimer Res 2:515–525CrossRefPubMedGoogle Scholar
  39. 39.
    Saevarsson S, Kristjánsson Á, Bach M, Heinrich SP (2012) P300 in neglect. Clin Neurophysiol 123:496–506. doi: 10.1016/j.clinph.2011.07.028 CrossRefPubMedGoogle Scholar
  40. 40.
    Rosenfeld JP, Soskins M, Bosh G, Ryan A (2004) Simple, effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology 41:205–219CrossRefPubMedGoogle Scholar
  41. 41.
    Marhöfer DJ, Bach M, Heinrich SP (2014) Faces are more attractive than motion: evidence from two simultaneous oddball paradigms. Doc Ophthalmol 128:201–209. doi: 10.1007/s10633-014-9434-1 CrossRefPubMedGoogle Scholar
  42. 42.
    Changizi MA, Zhang Q, Shimojo S (2006) Bare skin, blood and the evolution of primate colour vision. Biol Lett 2:217–221. doi: 10.1098/rsbl.2006.0440 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Meijer EH, Smulders FTY, Merckelbach HLGJ, Wolf AG (2007) The P300 is sensitive to concealed face recognition. Int J Psychophysiol 66:231–237. doi: 10.1016/j.ijpsycho.2007.08.001 CrossRefPubMedGoogle Scholar
  44. 44.
    Devue C, Brédart S (2008) Attention to self-referential stimuli: Can I ignore my own face? Acta Psychol 128:290–297. doi: 10.1016/j.actpsy.2008.02.004 CrossRefGoogle Scholar
  45. 45.
    Tacikowski P, Nowicka A (2010) Allocation of attention to self-name and self-face: an ERP study. Biol Psychol 84:318–324. doi: 10.1016/j.biopsycho.2010.03.009 CrossRefPubMedGoogle Scholar
  46. 46.
    World Medical Association (2000) Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Assoc 284:3043–3045CrossRefGoogle Scholar
  47. 47.
    Heinrich SP, Bach M (2008) Signal and noise in P300 recordings to visual stimuli. Doc Ophthalmol 117:73–83. doi: 10.1007/s10633-007-9107-4 CrossRefPubMedGoogle Scholar
  48. 48.
    Bex PJ, Makous W (2002) Spatial frequency, phase, and the contrast of natural images. J Opt Soc Am A Opt Image Sci Vis 19:1096–1106CrossRefPubMedGoogle Scholar
  49. 49.
    Freeman RD, Thibos LN (1975) Visual evoked responses in humans with abnormal visual experience. J Physiol 247:711–724CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Levi DM, Manny RE (1982) The pathophysiology of amblyopia: electrophysiological studies. Ann NY Acad Sci 388:243–263CrossRefPubMedGoogle Scholar
  51. 51.
    Chan H, Odom JV, Coldren J, Dove C, Chao G-M (1986) Acuity estimated by visually evoked potentials is affected by scaling. Doc Ophthalmol 62:107–117. doi: 10.1007/BF00140553 CrossRefPubMedGoogle Scholar
  52. 52.
    Bobak P, Khanna P, Goodwin J, Brigell M (1993) Pattern visual evoked potentials in cases of ambiguous acuity loss. Doc Ophthalmol 85:185–192. doi: 10.1007/BF01371133 CrossRefPubMedGoogle Scholar
  53. 53.
    Bach M (1996) The Freiburg visual acuity test—automatic measurement of visual acuity. Optom Vis Sci 73:49–53CrossRefPubMedGoogle Scholar
  54. 54.
    American Clinical Neurophysiology Society (2006) Guideline 5: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 23:107–110CrossRefGoogle Scholar
  55. 55.
    Katayama J, Polich J (1996) P300, probability, and the three-tone paradigm. Electroencephalogr Clin Neurophysiol 100:555–562CrossRefPubMedGoogle Scholar
  56. 56.
    Efron B (1979) Bootstrap methods: another look at the Jackknife. Ann Stat 7:1–26. doi: 10.1214/aos/1176344552 CrossRefGoogle Scholar
  57. 57.
    Webster MA, Georgeson MA, Webster SM (2002) Neural adjustments to image blur. Nat Neurosci 5:839–840. doi: 10.1038/nn906 CrossRefPubMedGoogle Scholar
  58. 58.
    Heinrich TS, Bach M (2001) Contrast adaptation in human retina and cortex. Invest Ophthalmol Vis Sci 42:2721–2727PubMedGoogle Scholar
  59. 59.
    Woods RL, Colvin CR, Vera-Diaz FA, Peli E (2010) A relationship between tolerance of blur and personality. IOVS 51:6077–6082. doi: 10.1167/iovs.09-5013 Google Scholar
  60. 60.
    Wilkinson RT, Seales DM (1978) EEG event-related potentials and signal detection. Biol Psychol 7:13–28CrossRefPubMedGoogle Scholar
  61. 61.
    Bonala B, Boutros NN, Jansen BH (2008) Target probability affects the likelihood that a P300 will be generated in response to a target stimulus, but not its amplitude. Psychophysiology 45:93–99. doi: 10.1111/j.1469-8986.2007.00613.x PubMedGoogle Scholar
  62. 62.
    Teixeira M, Pires G, Raimundo M, Nascimento S, Almeida V, Castelo-Branco M (2014) Robust single trial identification of conscious percepts triggered by sensory events of variable saliency. PLoS ONE 9:e86201. doi: 10.1371/journal.pone.0086201 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Norcia AM, Tyler CW, Hamer RD, Wesemann W (1989) Measurement of spatial contrast sensitivity with the swept contrast VEP. Vis Res 29:627–637CrossRefPubMedGoogle Scholar
  64. 64.
    Jeffreys DA (1989) A face-responsive potential recorded from the human scalp. Exp Brain Res 78:193–202. doi: 10.1007/BF00230699 CrossRefPubMedGoogle Scholar
  65. 65.
    Bötzel K, Grüsser O-J (1989) Electric brain potentials evoked by pictures of faces and non-faces: a search for “face-specific” EEG-potentials. Exp Brain Res 77:349–360. doi: 10.1007/BF00274992 CrossRefPubMedGoogle Scholar
  66. 66.
    Joyce C, Rossion B (2005) The face-sensitive N170 and VPP components manifest the same brain processes: the effect of reference electrode site. Clin Neurophysiol 116:2613–2631. doi: 10.1016/j.clinph.2005.07.005 CrossRefPubMedGoogle Scholar
  67. 67.
    Yeom S-K, Fazli S, Müller K-R, Lee S-W (2014) An efficient ERP-based brain–computer interface using random set presentation and face familiarity. PLoS ONE 9:e111157. doi: 10.1371/journal.pone.0111157 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Barrera ME, Maurer D (1981) Recognition of mother’s photographed face by the three-month-old infant. Child Dev 52:714–716. doi: 10.2307/1129196 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • David J. Marhöfer
    • 1
    • 2
    Email author
  • Michael Bach
    • 1
  • Sven P. Heinrich
    • 1
  1. 1.Sektion Funktionelle Sehforschung, Klinik für AugenheilkundeAlbert-Ludwigs-UniversitätFreiburgGermany
  2. 2.Fakultät für BiologieAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations