Advertisement

Documenta Ophthalmologica

, Volume 130, Issue 2, pp 131–139 | Cite as

Color vision and neuroretinal function in diabetes

  • B. E. WolffEmail author
  • M. A. BearseJr.
  • M. E. Schneck
  • K. Dhamdhere
  • W. W. Harrison
  • S. Barez
  • A. J. Adams
Original Research Article

Abstract

Purpose

We investigate how type 2 diabetes (T2DM) and diabetic retinopathy (DR) affect color vision (CV) and mfERG implicit time (IT), whether CV and IT are correlated, and whether CV and IT abnormality classifications agree.

Methods

Adams desaturated D-15 color test, mfERG, and fundus photographs were examined in 37 controls, 22 T2DM patients without DR (NoRet group), and 25 T2DM patients with DR (Ret group). Color confusion score (CCS) was calculated. ITs were averaged within the central 7 hexagons (central IT; ≤4.5°) and outside this area (peripheral IT; ≥4.5°). DR was within (DRIN) or outside (DROUT) of the central 7 hexagons. Group differences, percentages of abnormalities, correlations, and agreement were determined.

Results

CCS was greater in the NoRet (P = 0.002) and Ret (P < 0.0001) groups than in control group. CCS was abnormal in 3, 41, and 48 % of eyes in the control, NoRet, and Ret groups, respectively. Ret group CV abnormalities were more frequent in DRIN than in DROUT subgroups (71 vs. 18 %, respectively; P < 0.0001). CCS and IT were correlated only in the Ret group, in both retinal zones (P ≤ 0.028). Only in the Ret group did CCS and peripheral IT abnormality classifications agree (72 %; P < 0.05).

Conclusion

CV is affected in patients with T2DM, even without DR. Central DR increases the likelihood of a CV deficit compared with non-central DR. mfERG IT averaged across central or peripheral retinal locations is less frequently abnormal than CV in the absence of DR, and these two measures are correlated only when DR is present.

Keywords

Color vision Adams desaturated D-15 Multifocal mfERG Diabetes Diabetic retinopathy 

Notes

Acknowledgments

This research was funded by NIH EY021811 (MES) and NIH EY02271 (AJA). The authors thank Ken Huie for implementing the software for scoring the Adams desaturated D-15 data.

Conflict of interest

I certify that there is no actual or potential conflict of interest in relation to this article.

References

  1. 1.
    Centers for Disease Control and Prevention (2011) National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  2. 2.
    Zhang X, Saaddine JB, Chou CF, Cotch MF, Cheng YJ, Geiss LS, Gregg EW, Albright AL, Klein BE, Klein R (2010) Prevalence of diabetic retinopathy in the United States, 2005–2008. J Am Med Assoc (JAMA) 304(6):649–656. doi: 10.1001/jama.2010.1111 CrossRefGoogle Scholar
  3. 3.
    American Diabetes Association (2013) The cost of diabetes. http://www.diabetes.org/advocate/resources/cost-of-diabetes.html. Accessed 12 Feb 2014
  4. 4.
    Ng JS (2009) Specific medical intervention for diabetic retinopathy. Med Hypotheses 73(2):158–160. doi: 10.1016/j.mehy.2009.02.030 CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang X, Wang N, Barile GR, Bao S, Gillies M (2013) Diabetic retinopathy: neuron protection as a therapeutic target. Int J Biochem Cell Biol 45(7):1525–1529. doi: 10.1016/j.biocel.2013.03.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366(13):1227–1239. doi: 10.1056/NEJMra1005073 CrossRefPubMedGoogle Scholar
  7. 7.
    Barber AJ, Gardner TW, Abcouwer SF (2011) The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy. Invest Ophthalmol Vis Sci 52(2):1156–1163. doi: 10.1167/iovs.10-6293 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Pritchard N, Edwards K, Shahidi AM, Sampson GP, Russell AW, Malik RA, Efron N (2011) Corneal markers of diabetic neuropathy. Ocul Surf 9(1):17–28CrossRefPubMedGoogle Scholar
  9. 9.
    Ziegler D, Papanas N, Zhivov A, Allgeier S, Winter K, Ziegler I, Bruggemann J, Strom A, Peschel S, Kohler B, Stachs O, Guthoff RF, Roden M (2014) Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 63(7):2454–2463. doi: 10.2337/db13-1819 CrossRefPubMedGoogle Scholar
  10. 10.
    Bitirgen G, Ozkagnici A, Malik RA, Kerimoglu H (2014) Corneal nerve fibre damage precedes diabetic retinopathy in patients with type 2 diabetes mellitus. Diabetic Med J Br Diabetic Assoc 31(4):431–438. doi: 10.1111/dme.12324 CrossRefGoogle Scholar
  11. 11.
    Adams AJ, Haegerstrom-Portnoy G (1987) Color Deficiency. In: Amos JF (ed) Diagnosis and management in vision care, vol 1. Butterworth-Heinemann, Stoneham, pp 671–709Google Scholar
  12. 12.
    Bearse MA Jr, Adams AJ, Han Y, Schneck ME, Ng J, Bronson-Castain K, Barez S (2006) A multifocal electroretinogram model predicting the development of diabetic retinopathy. Prog Retin Eye Res 25(5):425–448. doi: 10.1016/j.preteyeres.2006.07.001 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Dhamdhere KP, Bearse MA Jr, Wolff BE, Harrison WW, Cardenas M, Barez S, Schneck ME, Adams AJ (2011) Associations between contrast sensitivity and multifocal electroretinograms in Type2 diabetes. Paper presented at the ARVO, Fort Lauderdale, Florida, 05/02/2011Google Scholar
  14. 14.
    Ewing FM, Deary IJ, Strachan MW, Frier BM (1998) Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev 19(4):462–476CrossRefPubMedGoogle Scholar
  15. 15.
    Feitosa-Santana C, Paramei GV, Nishi M, Gualtieri M, Costa MF, Ventura DF (2010) Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge colour test. Ophthalmic Physiol Opt 30(5):717–723. doi: 10.1111/j.1475-1313.2010.00776.x CrossRefPubMedGoogle Scholar
  16. 16.
    Peduzzi M, Longanesi L, Ascari A, Cascione S, Galletti M, Roncaia R, Pacchioni C, Maione M (1989) Screening of early color vision loss in diabetic patients. J Fr Ophtalmol 12(11):791–796PubMedGoogle Scholar
  17. 17.
    Rodgers M, Hodges R, Hawkins J, Hollingworth W, Duffy S, McKibbin M, Mansfield M, Harbord R, Sterne J, Glasziou P, Whiting P, Westwood M (2009) Colour vision testing for diabetic retinopathy: a systematic review of diagnostic accuracy and economic evaluation. Health Technol Assess 13(60):1–160. doi: 10.3310/hta13600 CrossRefPubMedGoogle Scholar
  18. 18.
    Sukha AY, Rubin A (2009) High, medium, and low contrast visual acuities in diabetic retinal disease. Optom Vis Sci Off Publ Am Acad Optom 86(9):1086–1095. doi: 10.1097/OPX.0b013e3181b48635 CrossRefGoogle Scholar
  19. 19.
    Wolff BE, Bearse MA Jr, Schneck ME, Barez S, Adams AJ (2010) Multifocal VEP (mfVEP) reveals abnormal neuronal delays in diabetes. Doc Ophthalmol Adv Ophthalmol 121(3):189–196. doi: 10.1007/s10633-010-9245-y CrossRefGoogle Scholar
  20. 20.
    Adams AJ et al (1982) Chromaticity and luminosity changes in glaucoma and diabetes. Doc Ophthalmol Proc Ser 33:413–418Google Scholar
  21. 21.
    Barca L, Vaccari G (1977) On the impairment of color discrimination in diabetic retinopathy, a report of 24 cases. Atti Fond G Ronchi 32:635–640Google Scholar
  22. 22.
    Birch JM, Chisholm I, Kinnear P, Marre M, Pinckers AJLG, Pokorny J, Smith VC, Verriest G (1979) Acquired color vision defects. In: Pokory J, Smith VC, Verriest G, Pinckers AJLG (eds) Congenital and Acquired Color Vision Defects. Grune and Stratton Inc, New York, pp 282–284Google Scholar
  23. 23.
    Kinnear PR, Aspinall PA, Lakowski R (1972) The diabetic eye and colour vision. Trans Ophthalmol Soc U K 92:69–78PubMedGoogle Scholar
  24. 24.
    Lakowski R, Aspinall PA, Kinnear PR (1973) Association between colour vision losses and diabetes melitus. Ophthalmic Res 4:145–159Google Scholar
  25. 25.
    Verriest G (1964) Acquired Color Perception Defects. Memoires de l’Academie royale de medecine de Belgique 18:35–327PubMedGoogle Scholar
  26. 26.
    Zanen J (1953) [Introduction to the study of acquired central retinal dyschromatopsias]. Bull Soc Belge Ophtalmol 103:3–144; discussion, 144–148Google Scholar
  27. 27.
    Zanen J, Szucs S, Pirart J (1957) Achromatic & chromatic thresholds in diabetes. Bull Soc Belge Ophtalmol 115(Pt 2):210–219PubMedGoogle Scholar
  28. 28.
    Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ (2004) Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 45(3):948–954CrossRefPubMedGoogle Scholar
  29. 29.
    Harrison WW, Bearse MA Jr, Ng JS, Jewell NP, Barez S, Burger D, Schneck ME, Adams AJ (2011) Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci 52(2):772–777. doi: 10.1167/iovs.10-5931 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Ng JS, Bearse MA Jr, Schneck ME, Barez S, Adams AJ (2008) Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci 49(4):1622–1628. doi: 10.1167/iovs.07-1157 CrossRefPubMedGoogle Scholar
  31. 31.
    Harrison WW, Bearse MA Jr, Schneck ME, Wolff BE, Jewell NP, Barez S, Mick AB, Dolan BJ, Adams AJ (2011) Prediction, by retinal location, of the onset of diabetic edema in patients with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 52(9):6825–6831. doi: 10.1167/iovs.11-7533 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Bresnick GH, Condit RS, Palta M, Korth K, Groo A, Syrjala S (1985) Association of hue discrimination loss and diabetic retinopathy. Arch Ophthalmol 103(9):1317–1324CrossRefPubMedGoogle Scholar
  33. 33.
    Adams AJ, Rodic R, Husted R, Stamper R (1982) Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients. Invest Ophthalmol Vis Sci 23(4):516–524PubMedGoogle Scholar
  34. 34.
    Hovis JK, Ramaswamy S, Anderson M (2004) Repeatability indices for the Adams D-15 test for colour-normal and colour-defective adults. Clin Exp Optom J Aust Optom Assoc 87(4–5):326–333CrossRefGoogle Scholar
  35. 35.
    Adams AJ, Rodic R (1982) Use of desaturated and saturated versions of the D-15 test in glaucoma and glaucoma-suspect patients. In: Verriest G (ed) Colour vision deficiencies IV. Doc Ophthalmol Proc Series, vol 33. The Hague: Dr W Junk, pp 419–424Google Scholar
  36. 36.
    Vingrys AJ, King-Smith PE (1988) A quantitative scoring technique for panel tests of color vision. Invest Ophthalmol Vis Sci 29(1):50–63PubMedGoogle Scholar
  37. 37.
    Hood DCLJ (1997) A technique for measuring individual multifocal ERG records: non-invasive assessment of the visual system. Trends Opt Photon 11:33–41Google Scholar
  38. 38.
    Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40(11):2638–2651PubMedGoogle Scholar
  39. 39.
    Han Y, Adams AJ, Bearse MA Jr, Schneck ME (2004) Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol 122(12):1809–1815. doi: 10.1001/archopht.122.12.1809 CrossRefPubMedGoogle Scholar
  40. 40.
    Hardy KJ, Fisher C, Heath P, Foster DH, Scarpello JH (1995) Comparison of colour discrimination and electroretinography in evaluation of visual pathway dysfunction in aretinopathic IDDM patients. Br J Ophthalmol 79(1):35–37CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Arden GB, Wolf JE (2004) Colour vision testing as an aid to diagnosis and management of age related maculopathy. Br J Ophthalmol 88(9):1180–1185. doi: 10.1136/bjo.2003.033480 CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Berninger T, Drobner B, Hogg C, Rudolph G, Arden GB, Kampik A (1999) Color vision in relation to age: a study of normal values. Klin Monatsbl Augenheilkd 215(1):37–42. doi: 10.1055/s-2008-1034667 CrossRefPubMedGoogle Scholar
  43. 43.
    Roy MS, Podgor MJ, Collier B, Gunkel RD (1991) Color vision and age in a normal North American population. Graefe’s Arch Clin Exp Ophthalmol (Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie) 229(2):139–144CrossRefGoogle Scholar
  44. 44.
    Nguyen-Tri D, Overbury O, Faubert J (2003) The role of lenticular senescence in age-related color vision changes. Invest Ophthalmol Vis Sci 44(8):3698–3704CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • B. E. Wolff
    • 1
    Email author
  • M. A. BearseJr.
    • 1
  • M. E. Schneck
    • 1
  • K. Dhamdhere
    • 1
  • W. W. Harrison
    • 2
  • S. Barez
    • 1
  • A. J. Adams
    • 1
  1. 1.School of OptometryUniversity of California, BerkeleyBerkeleyUSA
  2. 2.Arizona College of OptometryMidwestern UniversityGlendaleUSA

Personalised recommendations