Documenta Ophthalmologica

, Volume 128, Issue 3, pp 155–168

Contribution of retinal ganglion cells to the mouse electroretinogram

  • Benjamin J. Smith
  • Xu Wang
  • Balwantray C. Chauhan
  • Patrice D. Côté
  • François Tremblay
Original Research Article



To quantify the direct contribution of retinal ganglion cells (RGCs) on individual components of the mouse electroretinogram (ERG).


Dark- and light-adapted ERGs from mice 8 to 12 weeks after optic nerve transection (ONTx, n = 14) were analyzed through stimulus response curves for a- and b-waves, oscillatory potentials (OPs), positive and negative scotopic threshold response (p/n STR), and the photopic negative response (PhNR) and compared with unoperated and sham-operated controls, as well as to eyes treated with 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX).


We confirmed in mice that CNQX intravitreal injection reduced the scotopic a-wave amplitude at high flash strength, confirming a post-receptoral contribution to the a-wave. We found that ONTx, which is more specific to RGCs, did not affect the a-wave amplitude and implicit time in either photopic or scotopic conditions while the b-wave was reduced. Both the pSTR and nSTR components were reduced in amplitude, with the balance between the two components resulting in a shortening of the nSTR peak implicit time. On the other hand, amplitude of the PhNR was increased while the OPs were minimally affected.


With an intact a-wave demonstrated following ONTx, we find that the most robust indicators of RGC function in the mouse full-field ERG were the STR components.


Retinal ganglion cells Optic nerve Axotomy Electroretinogram Mouse Scotopic threshold response Photopic negative response 


  1. 1.
    Frishman LJ (2006) Origins of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principles and practice of clinical electrophysiology of vision, 2nd edn. The MIT Press, Cambridge, pp 139–183Google Scholar
  2. 2.
    Bush RA, Sieving PA (1994) A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 35:635–645PubMedGoogle Scholar
  3. 3.
    Robson JG, Saszik SM, Ahmed J, Frishman LJ (2003) Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol 547:509–530PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Robson JG, Frishman LJ (1998) Dissecting the dark-adapted electroretinogram. Doc Ophthalmol 95:187–215PubMedCrossRefGoogle Scholar
  5. 5.
    Jamison JA, Bush RA, Lei B, Sieving PA (2001) Characterization of the rod photoresponse isolated from the dark-adapted primate ERG. Vis Neurosci 18:445–455PubMedCrossRefGoogle Scholar
  6. 6.
    Friedburg C, Allen CP, Mason PJ, Lamb TD (2004) Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram. J Physiol 556:819–834PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Smith BJ, Tremblay F, Côté PD (2013) Voltage-gated sodium channels contribute to the b-wave of the rodent electroretinogram by mediating input to rod bipolar cell GABAc receptors. Exp Eye Res 116:279–290Google Scholar
  8. 8.
    Smith BJ, Côté PD (2012) Reduced retinal function in the absence of Na(v)1.6. PLoS ONE 7:e31476. doi:10.1371/journal.pone.0031476 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Dang TM, Tsai TI, Vingrys AJ, Bui BV (2011) Post-receptoral contributions to the rat scotopic electroretinogram a-wave. Doc Ophthalmol 122:149–156PubMedCrossRefGoogle Scholar
  10. 10.
    Alarcón-Martínez L, Avilés-Trigueros M, Galindo-Romero C et al (2010) ERG changes in albino and pigmented mice after optic nerve transection. Vis Res 50:2176–2187PubMedCrossRefGoogle Scholar
  11. 11.
    Heiduschka P, Julien S, Schuettauf F, Schnichels S (2010) Loss of retinal function in aged DBA/2 J mice—new insights into retinal neurodegeneration. Exp Eye Res 91:779–783PubMedCrossRefGoogle Scholar
  12. 12.
    Harazny J, Scholz M, Buder T et al (2009) Electrophysiological deficits in the retina of the DBA/2 J mouse. Doc Ophthalmol 119:181–197PubMedCrossRefGoogle Scholar
  13. 13.
    Grozdanic SD, Betts DM, Sakaguchi DS et al (2003) Laser-induced mouse model of chronic ocular hypertension. Invest Ophthalmol Vis Sci 44:4337–4346PubMedCrossRefGoogle Scholar
  14. 14.
    Brzezinski JA, Brown NL, Tanikawa A et al (2005) Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice. Invest Ophthalmol Vis Sci 46:2540–2551PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Yuki K, Yoshida T, Miyake S et al (2013) Neuroprotective role of superoxide dismutase 1 in retinal ganglion cells and inner nuclear layer cells against N-methyl-d-aspartate-induced cytotoxicity. Exp Eye Res 115:230–238PubMedCrossRefGoogle Scholar
  16. 16.
    Ohno Y, Nakanishi T, Umigai N et al (2012) Oral administration of crocetin prevents inner retinal damage induced by N-methyl-d-aspartate in mice. Eur J Pharmacol 690:84–89PubMedCrossRefGoogle Scholar
  17. 17.
    Germain F, Istillarte M, Gómez-Vicente V et al (2012) Electroretinographic and histologic study of mouse retina after optic nerve section: a comparison between wild type and rd1 mice. Clin Exp Ophthalmol 41:593–602CrossRefGoogle Scholar
  18. 18.
    Heiduschka P, Schnichels S, Fuhrmann N et al (2010) Electrophysiological and histologic assessment of retinal ganglion cell fate in a mouse model for OPA1-associated autosomal dominant optic atrophy. Invest Ophthalmol Vis Sci 51:1424–1431PubMedCrossRefGoogle Scholar
  19. 19.
    Alavi MV, Bette S, Schimpf S et al (2007) A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130:1029–1042PubMedCrossRefGoogle Scholar
  20. 20.
    Alarcón-Martínez L, la Villa De P, Avilés-Trigueros M et al (2009) Short and long term axotomy-induced ERG changes in albino and pigmented rats. Mol Vis 15:2373–2383PubMedCentralPubMedGoogle Scholar
  21. 21.
    Bui BV (2003) Ganglion cell contributions to the rat full-field electroretinogram. J Physiol 555:153–173PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Mojumder DK, Sherry DM, Frishman LJ (2008) Contribution of voltage-gated sodium channels to the b-wave of the mammalian flash electroretinogram. J Physiol 586:2551–2580PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gargini C, Bisti S, Demontis GC et al (2004) Electroretinogram changes associated with retinal upregulation of trophic factors: observations following optic nerve section. Neuroscience 126:775–783PubMedCrossRefGoogle Scholar
  24. 24.
    Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 543:899–916PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Ha Y, Saul A, Tawfik A et al (2011) Late-onset inner retinal dysfunction in mice lacking sigma receptor 1 (σR1). Invest Ophthalmol Vis Sci 52:7749–7760PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Holcombe DJ, Lengefeld N, Gole GA, Barnett NL (2008) Selective inner retinal dysfunction precedes ganglion cell loss in a mouse glaucoma model. Br J Ophthalmol 92:683–688PubMedCrossRefGoogle Scholar
  27. 27.
    Viswanathan S, Frishman LJ, Robson JG et al (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136PubMedGoogle Scholar
  28. 28.
    Gotoh Y, Machida S, Tazawa Y (2004) Selective loss of the photopic negative response in patients with optic nerve atrophy. Arch Ophthalmol 122:341–346PubMedCrossRefGoogle Scholar
  29. 29.
    Rangaswamy NV, Frishman LJ, Dorotheo EU et al (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45:3827–3837PubMedCrossRefGoogle Scholar
  30. 30.
    Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42:514–522PubMedGoogle Scholar
  31. 31.
    Niyadurupola N, Luu CD, Nguyen DQ et al (2013) Intraocular pressure lowering is associated with an increase in the photopic negative response (PhNR) amplitude in glaucoma and ocular hypertensive eyes. Invest Ophthalmol Vis Sci 54:1913–1919PubMedCrossRefGoogle Scholar
  32. 32.
    Machida SS (2012) Clinical applications of the photopic negative response to optic nerve and retinal diseases. J Ophthalmol 2012:397178PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Chrysostomou V, Crowston JG (2013) The photopic negative response of the mouse electroretinogram: reduction by acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 54:4691–4697PubMedCrossRefGoogle Scholar
  34. 34.
    Li B, Barnes GE, Holt WF (2005) The decline of the photopic negative response (PhNR) in the rat after optic nerve transection. Doc Ophthalmol 111:23–31PubMedCrossRefGoogle Scholar
  35. 35.
    Chauhan BC, Stevens KT, Levesque JM et al (2012) Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PLoS ONE 7:e40352. doi:10.1371/journal.pone.0040352 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kaplan HJ, Chiang C, Chen J, Song S (2010) Vitreous volume of the mouse measured by quantitative high-resolution MRI. Annual meeting of the association for research in vision and ophthalmology (ARVO) E-abstract No. 4414Google Scholar
  37. 37.
    Lei B, Yao G, Zhang K et al (2006) Study of rod- and cone-driven oscillatory potentials in mice. Invest Ophthalmol Vis Sci 47:2732–2738PubMedCrossRefGoogle Scholar
  38. 38.
    Jaissle GB, May CA, Reinhard J et al (2001) Evaluation of the rhodopsin knockout mouse as a model of pure cone function. Invest Ophthalmol Vis Sci 42:506–513PubMedGoogle Scholar
  39. 39.
    Tanimoto N, Sothilingam V, Euler T et al (2012) BK channels mediate pathway-specific modulation of visual signals in the in vivo mouse retina. J Neurosci 32:4861–4866PubMedCrossRefGoogle Scholar
  40. 40.
    Salinas-Navarro M, Alarcón-Martínez L, Valiente-Soriano FJ et al (2009) Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol Vis 15:2578–2598PubMedCentralPubMedGoogle Scholar
  41. 41.
    Cuenca N, Pinilla I, Fernández-Sánchez L et al (2010) Changes in the inner and outer retinal layers after acute increase of the intraocular pressure in adult albino Swiss mice. Exp Eye Res 91:273–285PubMedCrossRefGoogle Scholar
  42. 42.
    Blanco R, Germain F, Velasco A, Villa PDL (2002) Down-regulation of glutamate-induced conductances of retinal horizontal cells after ganglion cell axotomy. Exp Eye Res 75:209–216PubMedCrossRefGoogle Scholar
  43. 43.
    Germain F, Blanco R, la Villa De P (2006) Expression and Functionality of gaba and glutamate receptors in axotomized ganglion cells of the rabbit retina. Annual meeting of the association for research in vision and ophthalmology (ARVO) E-abstract No. 160Google Scholar
  44. 44.
    Germain F, Fernández E, De la Villa P (2003) Morphometrical analysis of dendritic arborization in axotomized retinal ganglion cells. Eur J Neurosci 18:1103–1109PubMedCrossRefGoogle Scholar
  45. 45.
    Kielczewski JL, Pease ME, Quigley HA (2005) The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci 46:3188–3196PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Agudo M, Pérez-Marín MC, Lönngren U et al (2008) Time course profiling of the retinal transcriptome after optic nerve transection and optic nerve crush. Mol Vis 14:1050–1063PubMedCentralPubMedGoogle Scholar
  47. 47.
    Chauhan BC, Pan J, Archibald ML et al (2002) Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. Invest Ophthalmol Vis Sci 43:2969–2976PubMedGoogle Scholar
  48. 48.
    Kong YX, Crowston JG, Vingrys AJ et al (2009) Functional changes in the retina during and after acute intraocular pressure elevation in mice. Invest Ophthalmol Vis Sci 50:5732–5740PubMedCrossRefGoogle Scholar
  49. 49.
    Kenyon GT, Moore B, Jeffs J et al (2003) A model of high-frequency oscillatory potentials in retinal ganglion cells. Vis Neurosci 20:465–480PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kenyon GT, Travis BJ, Theiler J et al (2004) Stimulus-specific oscillations in a retinal model. IEEE Trans Neural Netw 15:1083–1091PubMedCrossRefGoogle Scholar
  51. 51.
    Neuenschwander S, Singer W (1996) Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379:728–732PubMedCrossRefGoogle Scholar
  52. 52.
    Miura G, Wang MH, Ivers KM, Frishman LJ (2009) Retinal pathway origins of the pattern ERG of the mouse. Exp Eye Res 89:49–62PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Barnard AR, Charbel Issa P, Perganta G et al (2011) Specific deficits in visual electrophysiology in a mouse model of dominant optic atrophy. Exp Eye Res 93:771–777PubMedCrossRefGoogle Scholar
  54. 54.
    Machida S, Raz-Prag D, Fariss RN et al (2008) Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest Ophthalmol Vis Sci 49:442–452PubMedCrossRefGoogle Scholar
  55. 55.
    Gunn DJ, Gole GA, Barnett NL (2011) Specific amacrine cell changes in an induced mouse model of glaucoma. Clin Exp Ophthalmol 39:555–563CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Benjamin J. Smith
    • 1
  • Xu Wang
    • 2
    • 3
    • 5
  • Balwantray C. Chauhan
    • 2
    • 3
    • 4
  • Patrice D. Côté
    • 1
    • 4
  • François Tremblay
    • 2
    • 3
    • 4
  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada
  2. 2.Retina and Optic Nerve Research LaboratoryDalhousie UniversityHalifaxCanada
  3. 3.Department of Physiology and BiophysicsDalhousie UniversityHalifaxCanada
  4. 4.Department of Ophthalmology and Visual SciencesDalhousie UniversityHalifaxCanada
  5. 5.Unit on Neuron-Glia Interactions in Retinal Disease, National Eye InstituteNational Institutes of HealthBethesdaCanada

Personalised recommendations