Documenta Ophthalmologica

, Volume 127, Issue 3, pp 227–238 | Cite as

Pattern electroretinogram to detect glaucoma: comparing the PERGLA and the PERG Ratio protocols

  • Michael BachEmail author
  • Anke Ramharter-Sereinig
Original Research Article



To detect early glaucoma, Porciatti and Ventura suggested in 2004 the pattern electroretinogram (PERG) protocol “PERGLA” with the following features: (1) skin electrodes, (2) steady-state reversal (15 rps) of horizontal 1.6 cpd gratings and (3) Fourier-based analysis. We compared this to our “PERG Ratio” protocol which uses (1) corneal (DTL) electrodes, (2) nearly the same reversal rate, but 2 check sizes of 0.8° and 16° and (3) Fourier-based analysis using the ratio of amplitudes to the 2 check sizes.


We examined 16 eyes with glaucoma (age 64 ± 7 years) and a control group (n = 13, age 59 ± 8 years). Responses to all stimuli were simultaneously recorded with both electrode types using PERGLA-type gratings and checkerboards as necessary for the PERG Ratio.


The median intra-individual test–retest coefficient of variation in normals pooled across stimuli for skin was 10.0 (95 % CI 1–85 %) and for DTL 9.95 (0.5–49 %), and they are thus nearly identical. The amplitudes obtained from skin were on average 30 % of those with DTL; the skin’s signal-to-noise ratio (SNR) was 66 % of DTL electrodes. Glaucoma detection was assessed via receiver operating characteristics (ROCs). Using skin electrodes, ROC area-under-curve (AUC) was 72/76/72 % using gratings (PERGLA), checks or the PERG Ratio, respectively. Using DTL electrodes, the ROC areas were 60/67/77 %; the last value corresponds to the PERG Ratio protocol.


Our results suggest that skin electrodes are a valid alternative to corneal electrodes: their advantages being no direct eye contact and smaller normal amplitude range compared to DTL; disadvantages: amplitude reduced to 30 % of DTL and SNR ratio reduced to 66 % of DTL. Efficacy in detecting glaucoma was a little higher with the PERG Ratio protocol (ROC AUC: 77 %, PERGLA: 72 %), but not significantly so.


Pattern ERG PERG Glaucoma Methodology Skin electrode DTL electrode 



We thank our participants for taking part in this study, and two anonymous reviewers for supportive critique.

Conflict of interest



  1. 1.
    Groneberg A, Teping C (1980) Topodiagnostik von Sehstörungen durch Ableitung retinaler und kortikaler Antworten auf Umkehr-Kontrastmuster. Ber Dtsch Ophthalmol Ges 77:409–415CrossRefGoogle Scholar
  2. 2.
    Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211:953–954CrossRefGoogle Scholar
  3. 3.
    Sieving PA, Steinberg RH (1987) Proximal retinal contributions to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57:104–120PubMedGoogle Scholar
  4. 4.
    Zrenner E (1989) Physiological basis of the pattern electroretinogram. Prog Retin Res 9:427–464CrossRefGoogle Scholar
  5. 5.
    Bach M, Gerling J, Geiger K (1992) Optic atrophy reduces the pattern-electroretinogram for both fine and coarse stimulus patterns. Clin Vis Sci 7:327–333Google Scholar
  6. 6.
    Bach M, Hoffmann MB (2006) The origin of the pattern electroretinogram (PERG). In: Heckenlively J, Arden G (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 185–196Google Scholar
  7. 7.
    Bach M, Hoffmann MB (2008) Update on the pattern electroretinogram in glaucoma. Optom Vis Sci 85:386–395CrossRefPubMedGoogle Scholar
  8. 8.
    Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561CrossRefPubMedGoogle Scholar
  9. 9.
    Holder GE (2001) The pattern electroretinogram. In: Fishman GA, Birch DG, Holder GE, Brigell MG (eds) Electrophysiologic testing in disorders of the retina, optic nerve and visual pathway. American Academy of Ophthalmology, San Francisco, pp 197–235Google Scholar
  10. 10.
    Porciatti V, Falsini B, Brunori S, Colotto A, Moretti G (1987) Pattern electroretinogram as a function of spatial frequency in ocular hypertension and early glaucoma. Doc Ophthalmol 65:349–355CrossRefPubMedGoogle Scholar
  11. 11.
    Bach M, Hiss P, Röver J (1988) Check-size specific changes of pattern electroretinogram in patients with early open-angle glaucoma. Doc Ophthalmol 69:315–322CrossRefPubMedGoogle Scholar
  12. 12.
    Bayer AU, Maag KP, Erb C (2002) Detection of optic neuropathy in glaucomatous eyes with normal standard visual fields using a test battery of short-wavelength automated perimetry and pattern electroretinography. Ophthalmology 109:1350–1361CrossRefPubMedGoogle Scholar
  13. 13.
    Bach M (2001) Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol 11(Suppl 2):S41–S49PubMedGoogle Scholar
  14. 14.
    Arai M, Yoshimura N, Sakaue H, Chihara E, Honda Y (1993) A 3-year follow-up study of ocular hypertension by pattern electroretinogram. Ophthalmologica 207:187–195CrossRefPubMedGoogle Scholar
  15. 15.
    Pfeiffer N, Tillmon B, Bach M (1993) Predictive value of the pattern-electroretinogram in high-risk ocular hypertension. Invest Ophthalmol Vis Sci 34:1710–1715PubMedGoogle Scholar
  16. 16.
    Gonzalvo Ibanez FJ, Fernandez Tirado FJ, Almarcegui Lafita C, Polo Llorens V, Sanchez Perez A, Honrubia Lopez FM (2001) Predictive value of the pattern-electroretinogram in glaucoma. Arch Soc Esp Oftalmol 76:485–491PubMedGoogle Scholar
  17. 17.
    Philippin H, Unsoeld A, Maier P, Walter S, Bach M, Funk J (2006) Ten-year results: detection of long-term progressive optic disc changes with confocal laser tomography. Graefes Arch Clin Exp Ophthalmol 244:460–464CrossRefPubMedGoogle Scholar
  18. 18.
    Bach M, Unsoeld AS, Philippin H, Staubach F, Maier P, Walter HS, Bomer TG, Funk J (2006) Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci 47:4881–4887CrossRefPubMedGoogle Scholar
  19. 19.
    Bode SF, Jehle T, Bach M (2011) Pattern electroretinogram (PERG) in glaucoma suspects—new findings from a longitudinal study. Invest Ophthalmol Vis Sci 52:4300–4306CrossRefPubMedGoogle Scholar
  20. 20.
    Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, Wilson MR, Gordon MO (2002) The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120:701–713; discussion 829–830CrossRefPubMedGoogle Scholar
  21. 21.
    Heijl A, Leske MC, Bengtsson B, Hyman L, Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the early manifest glaucoma trial. Arch Ophthalmol 120:1268–1279CrossRefPubMedGoogle Scholar
  22. 22.
    Van den Berg TJ, Boltjes B (1987) The point-spread function of the eye from 0 degrees to 100 degrees and the pattern electroretinogram. Doc Ophthalmol 67:347–354CrossRefPubMedGoogle Scholar
  23. 23.
    Leipert KP, Gottlob I (1987) Pattern electroretinogram: effects of miosis, accommodation, and defocus. Doc Ophthalmol 67:335–346CrossRefPubMedGoogle Scholar
  24. 24.
    Bach M, Mathieu M (2004) Different effect of dioptric defocus vs. light scatter on the pattern electroretinogram (PERG). Doc Ophthalmol 108:99–106CrossRefPubMedGoogle Scholar
  25. 25.
    Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16:607–617PubMedGoogle Scholar
  26. 26.
    Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111:161–168CrossRefPubMedGoogle Scholar
  27. 27.
    Ventura LM, Porciatti V, Ishida K, Feuer WJ, Parrish RK (2005) Pattern electroretinogram abnormality and glaucoma. Ophthalmology 112:10–19CrossRefPubMedGoogle Scholar
  28. 28.
    Ventura LM, Porciatti V (2006) Pattern electroretinogram in glaucoma. Curr Opin Ophthalmol 17:196–202CrossRefPubMedGoogle Scholar
  29. 29.
    Holder GE, Brigell MG, Hawlina M, Meigen T, Vaegan (2007) ISCEV standard for clinical pattern electroretinography—2007 update. Doc Ophthalmol 114:111–116CrossRefPubMedGoogle Scholar
  30. 30.
    Kakisu Y, Mizota A, Adachi E (1986) Clinical application of the pattern electroretinogram with lid skin electrode. Doc Ophthalmol 63:187–194CrossRefPubMedGoogle Scholar
  31. 31.
    Coupland SG, Janaky M (1989) ERG electrode in pediatric patients: comparison of DTL fiber, PVA-gel, and non-corneal skin electrodes. Doc Ophthalmol 71:427–433CrossRefPubMedGoogle Scholar
  32. 32.
    McCulloch DL, Van Boemel GB, Borchert MS (1997) Comparisons of contact lens, foil, fiber and skin electrodes for patterns electroretinograms. Doc Ophthalmol 94:327–340CrossRefPubMedGoogle Scholar
  33. 33.
    Sehi M, Grewal DS, Goodkin ML, Greenfield DS (2010) Reversal of retinal ganglion cell dysfunction after surgical reduction of intraocular pressure. Ophthalmology 117:2329–2336CrossRefPubMedGoogle Scholar
  34. 34.
    Bowd C, Tafreshi A, Zangwill LM, Medeiros FA, Sample PA, Weinreb RN (2011) Pattern electroretinogram association with spectral domain-OCT structural measurements in glaucoma. Eye 25:224–232CrossRefPubMedGoogle Scholar
  35. 35.
    Forte R, Ambrosio L, Bonavolontà P, Ambrosio G (2010) Pattern electroretinogram optimized for glaucoma screening (PERGLA) and retinal nerve fiber thickness in suspected glaucoma and ocular hypertension. Doc Ophthalmol 120:187–192CrossRefPubMedGoogle Scholar
  36. 36.
    Tafreshi A, Racette L, Weinreb RN, Sample PA, Zangwill LM, Medeiros FA, Bowd C (2010) Pattern electroretinogram and psychophysical tests of visual function for discriminating between healthy and glaucoma eyes. Am J Ophthalmol 149:488–495CrossRefPubMedGoogle Scholar
  37. 37.
    Banitt MR, Ventura LM, Feuer WJ, Savatovsky E, Luna G, Shif O, Bosse B, Porciatti V (2013) Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci 54:2346–2352CrossRefPubMedGoogle Scholar
  38. 38.
    Ventura LM, Golubev I, Feuer WJ, Porciatti V (2013) Pattern electroretinogram progression in glaucoma suspects. J Glaucoma 22:219–225CrossRefPubMedGoogle Scholar
  39. 39.
    Hiss P, Fahl G (1991) Changes in the pattern electroretinogram in glaucoma and ocular hypertension are dependent on stimulus frequency. Fortschr Ophthalmol 88:562–565PubMedGoogle Scholar
  40. 40.
    Bach M, Speidel-Fiaux A (1989) Pattern electroretinogram in glaucoma and ocular hypertension. Doc Ophthalmol 73:173–181CrossRefPubMedGoogle Scholar
  41. 41.
    World Medical Association (2000) Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Med Assoc 284:3043–3045CrossRefGoogle Scholar
  42. 42.
    Holopigian K, Bach M (2010) A primer on common statistical errors in clinical ophthalmology. Doc Ophthalmol 121:215–222CrossRefPubMedGoogle Scholar
  43. 43.
    Aulhorn E, Karmeyer H (1976) Frequency distribution in early glaucomatous visual field defects. Doc Ophthalmol Proc Ser 14:75–83Google Scholar
  44. 44.
    Bach M (2007) Preparation and montage of DTL-electrodes. Accessed 19 Aug 2013
  45. 45.
    Bach M (2007) The Freiburg visual acuity test-variability unchanged by post hoc re-analysis. Graefes Arch Clin Exp Ophthalmol 245:965–971CrossRefPubMedGoogle Scholar
  46. 46.
    Bach M (2007) Freiburg evoked potentials.
  47. 47.
    Bach M, Meigen T, Strasburger H (1997) Raster-scan cathode-ray tubes for vision research—limits of resolution in space, time and intensity, and some solutions. Spat Vis 10:403–414CrossRefPubMedGoogle Scholar
  48. 48.
    Fahle M, Bach M (2006) Basics of the VEP. In: Heckenlively J, Arden G (eds) Principles and practice of clinical electrophysiology of vision. MIT Press, Cambridge, pp 207–234Google Scholar
  49. 49.
    Bach M, Meigen T (1999) Do’s and don’ts in Fourier analysis of steady-state potentials. Doc Ophthalmol 99:69–82CrossRefPubMedGoogle Scholar
  50. 50.
    Meigen T, Bach M (1999) On the statistical significance of electrophysiological steady-state responses. Doc Ophthalmol 98:207–232CrossRefPubMedGoogle Scholar
  51. 51.
    Norcia AM, Tyler CW, Hamer RD, Wesemann W (1989) Measurement of spatial contrast sensitivity with the swept contrast VEP. Vis Res 29:627–637CrossRefPubMedGoogle Scholar
  52. 52.
    R Development Core Team (2006) R: a language and environment for statistical computing.
  53. 53.
    Swets JA (1973) The relative operating characteristic in psychology A technique for isolating effects of response bias finds wide use in the study of perception and cognition. Science 182:990–1000CrossRefPubMedGoogle Scholar
  54. 54.
    Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77CrossRefPubMedGoogle Scholar
  55. 55.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRefPubMedGoogle Scholar
  56. 56.
    Ventura LM, Sorokac N, De Los Santos R, Feuer WJ, Porciatti V (2006) The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci 47:3904–3911CrossRefPubMedGoogle Scholar
  57. 57.
    Vizzeri G, Tafreshi A, Weinreb RN, Bowd C (2010) Effect of operator and optical defocus on the variability of pattern electroretinogram optimized for glaucoma detection (PERGLA). J Glaucoma 19:77–82PubMedGoogle Scholar
  58. 58.
    Bradshaw K, Hansen R, Fulton A (2004) Comparison of ERGs recorded with skin and corneal-contact electrodes in normal children and adults. Doc Ophthalmol 109:43–55CrossRefPubMedGoogle Scholar
  59. 59.
    Hennessy MP, Vaegan (1995) Amplitude scaling relationships of Burian–Allen, gold foil and Dawson, Trick and Litzkow electrodes. Doc Ophthalmol 89:235–248CrossRefPubMedGoogle Scholar
  60. 60.
    Otto T, Bach M (1996) Retest variability and diurnal effects in the pattern electroretinogram. Doc Ophthalmol 92:311–323CrossRefPubMedGoogle Scholar
  61. 61.
    Bartel P, Becker P, Robinson E (1991) The intrasession repeatability of pattern electroretinograms and the effects of digital filtering. Doc Ophthalmol 76:351–358CrossRefPubMedGoogle Scholar
  62. 62.
    Odom JV, Holder GE, Feghali JG, Cavender S (1992) Pattern electroretinogram intrasession reliability: a two center comparison. Clin Vis Sci 7:263–281Google Scholar
  63. 63.
    Heinrich TS, Bach M (2001) Contrast adaptation in human retina and cortex. Invest Ophthalmol Vis Sci 42:2721–2727PubMedGoogle Scholar
  64. 64.
    Heinrich TS, Bach M (2002) Contrast adaptation in retinal and cortical evoked potentials: no adaptation to low spatial frequencies. Vis Neurosci 19:645–650PubMedGoogle Scholar
  65. 65.
    Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46:1296–1302CrossRefPubMedGoogle Scholar
  66. 66.
    Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, Meigen T, Viswanathan S (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 124:1–13CrossRefGoogle Scholar
  67. 67.
    Bach M, Schumacher M (2002) The influence of ambient room lighting on the pattern electroretinogram (PERG). Doc Ophthalmol 105:281–289CrossRefPubMedGoogle Scholar
  68. 68.
    Hess RF, Baker CL (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51:939–951PubMedGoogle Scholar
  69. 69.
    Bach M, Holder GE (1996) Check size tuning of the pattern-ERG: a reappraisal. Doc Ophthalmol 92:193–202CrossRefPubMedGoogle Scholar
  70. 70.
    Johnson MA, Drum BA, Quigley HA, Sanchez RM, Dunkelberger GR (1989) Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma. Invest Ophthalmol Vis Sci 30:897–907PubMedGoogle Scholar
  71. 71.
    Preiser D, Lagrèze WA, Bach M, Poloschek CM (2013) Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci 54:1182–1191CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University Eye HospitalFreiburgGermany
  2. 2.Univ.-Augenklinik InnsbruckInnsbruckAustria

Personalised recommendations