Documenta Ophthalmologica

, Volume 126, Issue 2, pp 137–148 | Cite as

Extrafoveal changes following intravitreal bevacizumab injections for macular edema secondary to branch retinal vein occlusion: an mfERG and OCT study

  • Saemi Park
  • In Hwan Cho
  • Tae Kwann Park
  • Woo Ho Nam
  • Young-Hoon Ohn
Original Research Article



To evaluate the functional and structural changes of extrafoveal macula after intravitreal bevacizumab (IVB) injection in patients with macular edema due to branch retinal vein occlusion (BRVO) using multifocal electroretinogram (mfERG) and optical coherence tomography (OCT).


A total of 19 eyes of 19 patients with macular edema due to BRVO received three consecutive IVB injections with a 6-week interval. Spectral domain optical coherence tomography (SD-OCT), mfERG, and fluorescein angiography (FA) were performed at baseline. The macular area was divided into four quadrants (Q1–Q4) based on FA. The mean retinal thickness (MRT) and mfERG parameters in each of the four quadrants were measured at baseline and 4 weeks after the third injection.


The MRT in the four quadrants improved significantly after IVB injections (p < 0.01 for Q1 and Q2, p < 0.05 for Q3 and Q4) compared to baseline. The significant improvements in mfERG responses were seen in Q1 and Q2. In Q1, there were 68 and 56 % improvement in N1 and P1 amplitude, respectively (p < 0.01). N1 and P1 amplitude in Q2 increased significantly by 43 and 46 %, respectively, compared to baseline (p < 0.05). The MRT and P1 amplitude were significantly correlated at baseline in Q1 and Q2, but no significant correlations were found after three IVB injections.


The injection of IVB improved functional and structural outcomes in the primarily affected half of the extrafoveal macula effectively. The measurements of structural and functional changes using mfERG and OCT may be appropriate for monitoring the effects of IVB injection in BRVO patients.


Branch retinal vein occlusion (BRVO) Intravitreal bevacizumab injection (IVB) Multifocal electroretinogram (mfERG) Mean retinal thickness (MRT) Spectral domain optical coherence tomography (SD-OCT) 


Conflict of interest

No potential conflict of interest relevant to this article was reported.


  1. 1.
    Mitchell P, Smith W, Chang A (1996) Prevalence and associations of retinal vein occlusion in Australia. The Blue Mountains Eye Study. Arch Ophthalmol 114:1243–1247PubMedCrossRefGoogle Scholar
  2. 2.
    The Branch Retinal Vein Occlusion Study Group (1984) Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol 98:271–282Google Scholar
  3. 3.
    Michels RG, Gass JD (1974) The natural course of retinal vein obstruction. Trans Am Acad Ophthalmol Otolaryngol 78:OPI166–OPI177Google Scholar
  4. 4.
    Finkelstein D (1992) Ischemic macular edema. Recognition and favorable natural history in branch vein occlusion. Arch Ophthalmol 110:1427–1434PubMedCrossRefGoogle Scholar
  5. 5.
    Rehak J, Rehak M (2008) Branch retinal vein occlusion: pathogenesis, visual prognosis, and treatment modalities. Curr Eye Res 33:111–131PubMedCrossRefGoogle Scholar
  6. 6.
    Spaide RF, Lee JK, Klancnik JK Jr, Gross NE (2003) Optical coherence tomography of branch retinal vein occlusion. Retina 23:343–347PubMedCrossRefGoogle Scholar
  7. 7.
    Parodi MB, Di Stefano G, Ravalico G (2008) Grid laser treatment for exudative retinal detachment secondary to ischemic branch retinal vein occlusion. Retina 28:97–102PubMedCrossRefGoogle Scholar
  8. 8.
    Christofferson NL, Larsen M (1999) Pathophysiology and hemodynamics of branch retinal vein occlusion. Ophthalmology 106:2054–2062CrossRefGoogle Scholar
  9. 9.
    Krieschbaum K, Michels S, Prager F, Georgopoulos M, Funk M, Geitzenauer W, Schmidt-Erfurth U (2008) Intravitreal Avastin for macular oedema secondary to retinal vein occlusion: a prospective study. Br J Ophthalmol 92:518–522CrossRefGoogle Scholar
  10. 10.
    Rabena MD, Pieramici DJ, Castellarin AA, Nasir MA, Avery RL (2007) Intravitreal bevacizumab (Avastin) in the treatment of macular edema secondary to branch vein occlusion. Retina 27:419–425PubMedCrossRefGoogle Scholar
  11. 11.
    Figueroa MS, Contreras I, Noval S, Arruabarrena C (2010) Results of Bevacizumab as the primary treatment for retinal vein occlusions. Br J Ophthalmol 94:1052–1056PubMedCrossRefGoogle Scholar
  12. 12.
    Pai SA, Shetty R, Vijayan PB, Venkatasubramaniam G, Yadav NK, Shetty BK, Babu RB, Narayana KM (2007) Clinical, anatomic, and eletrophysiologic evaluation following intravitreal bevacizumab for macular edema in retinal vein occlusion. Am J Ophthalmol 143:601–606PubMedCrossRefGoogle Scholar
  13. 13.
    Matt G, Sacu S, Buehl W, Ahlers C, Dunavoelgyi R, Pruente C, Schmidt-Erfurth U (2011) Comparison of retinal thickness values and segmentation performance of different OCT devices in acute branch retinal vein occlusion. Eye 25:511–518PubMedCrossRefGoogle Scholar
  14. 14.
    Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, Marmor MF, McCulloch DL, Palmowski-Wolfe AM, International Society for Clinical Electrophysiology of Vision (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 124:1–13PubMedCrossRefGoogle Scholar
  15. 15.
    Arnarsson A, Stefánsson E (2000) Laser treatment and the mechanism of edema reduction in branch retinal vein occlusion. Invest Ophthalmol Vis Sci 41:877–879PubMedGoogle Scholar
  16. 16.
    Silva RM, Faria de Abreu JR, Cunha-Vaz JG (1995) Blood-retina barrier in acute retinal branch vein occlusion. Graefes Arch Clin Exp Ophthalmol 233:721–726PubMedCrossRefGoogle Scholar
  17. 17.
    Noma H, Funatsu H, Yamasaki M, Tsukamoto H, Mimura T, Sone T, Jian K, Sakamoto I, Nakano K, Yamashita H, Minamoto A, Mishima HK (2005) Pathogenesis of macular edema with branch retinal vein occlusion and intraocular levels of vascular endothelial growth factor and interleukin-6. Am J Ophthalmol 140:256–261PubMedCrossRefGoogle Scholar
  18. 18.
    Noma H, Funatsu H, Sakata K, Harino S, Nagaoka T, Mimura T, Sone T, Hori S (2009) Macular microcirculation and macular oedema in branch retinal vein occlusion. Br J Ophthalmol 93:630–633PubMedCrossRefGoogle Scholar
  19. 19.
    Moschos MM, Moschos M (2008) Intraocular bevacizumab for macular edema due to CRVO. A multifocal-ERG and OCT study. Doc Ophthalmol 116:147–152PubMedCrossRefGoogle Scholar
  20. 20.
    Torres-Soriano ME, Cubas-Lorenzo V, García-Aguirre G, Hernández-Rojas M, Kon-Jara V, Díaz-Rubio J, Fromow-Guerra J, Quiroz-Mercado H, Jiménez-Sierra JM (2012) Multifocal electrophysiologic findings after intravitreal bevacizumab (Avastin) treatment. Retina 32:972–976PubMedCrossRefGoogle Scholar
  21. 21.
    Shetty R, Pai SA, Vincent A, Shetty N, Narayana KM, Sinha B, Shetty BK (2008) Electrophysiological and structural assessment of the central retina following intravitreal injection of bevacizumab for treatment of macular edema. Doc Ophthalmol 116:129–135PubMedCrossRefGoogle Scholar
  22. 22.
    Pedersen KB, Møller F, Sjølie AK, Andréasson S (2010) Electrophysiological assessment of retinal function during 6 months of bevacizumab treatment in neovascular age-related macular degeneration. Retina 30:1025–1033PubMedCrossRefGoogle Scholar
  23. 23.
    Hvarfner C, Andreasson S, Larsson J (2006) Multifocal electroretinography and fluorescein angiography in retinal vein occlusion. Retina 26:292–296PubMedCrossRefGoogle Scholar
  24. 24.
    Moschos MM, Brouzas D, Apostolopoulos M, Koutsandrea C, Loukianou E, Moschos M (2007) Intravitreal use of bevacizumab (Avastin) for choroidal neovascularization due to ARMD: a preliminary multifocal-ERG and OCT study. Doc Ophthalmol 114:37–44PubMedCrossRefGoogle Scholar
  25. 25.
    Funk M, Kriechbaum K, Prager F, Benesch T, Georgopoulos M, Zlabinger GJ, Schmidt-Erfurth U (2009) Intraocular concentrations of growth factors and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab. Invest Ophthalmol Vis Sci 50:1025–1032PubMedCrossRefGoogle Scholar
  26. 26.
    Silva MF, Mateus C, Reis A, Nunes S, Fonseca P, Castelo-Branco M (2010) Asymmetry of visual sensory mechanisms: electrophysiological, structural, and psychophysical evidences. J Vis 10:1–11CrossRefGoogle Scholar
  27. 27.
    Vincent A, Shetty R, Devi SA, Kurian MK, Balu R, Shetty B (2010) Functional involvement of cone photoreceptors in advanced glaucoma: a multifocal electroretinogram study. Doc Ophthalmol 121:21–27PubMedCrossRefGoogle Scholar
  28. 28.
    Grover S, Murthy RK, Brar VS, Chalam KV (2009) Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (Spectralis). Am J Ophthalmol 148:266–271PubMedCrossRefGoogle Scholar
  29. 29.
    Grover S, Murthy RK, Brar VS, Chalam KV (2010) Comparison of retinal thickness in normal eyes using stratus and spectralis optical coherence tomography. Invest Ophthalmol Vis Sci 51:2644–2647PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Saemi Park
    • 1
  • In Hwan Cho
    • 1
  • Tae Kwann Park
    • 1
  • Woo Ho Nam
    • 2
  • Young-Hoon Ohn
    • 1
  1. 1.Department of Ophthalmology, College of MedicineSoonchunhyang UniversityWonmi-gu, BucheonKorea
  2. 2.HanGil Eye HospitalIncheonKorea

Personalised recommendations