Advertisement

Documenta Ophthalmologica

, Volume 125, Issue 1, pp 31–42 | Cite as

Analysis of multifocal electroretinograms from a population with type 1 diabetes using partial least squares reveals spatial and temporal distribution of changes to retinal function

  • Tom WrightEmail author
  • Filomeno Cortese
  • Josefin Nilsson
  • Carol Westall
Original Research Article

Abstract

Spatial–temporal partial least squares (ST-PLS) is a multivariate statistical analysis that has improved the analysis of modern imaging techniques. Multifocal electroretinograms (mfERGs) contain a large amount of data, and averaging and grouping have been used to reduce the amount of data to levels that can be handled using traditional statistical methods. In contrast, using all acquired data points, ST-PLS enables statistically rigorous testing of changes in waveform shape and in the distributed signal related to retinal function. We hypothesise that ST-PLS will improve analysis of the mfERG. Two mfERG protocols, a 103 hexagon clinical protocol and a slow-flash mfERG (sf-mfERG) protocol, were recorded from an adolescent population with type 1 diabetes and an age similar control population. The standard mfERGs were analysed using a template-fitting algorithm and the sf-mfERG using a signal-to-noise measure. The results of these traditional analysis techniques are compared with those of the ST-PLS analysis. Traditional analysis of the mfERG recordings revealed changes between groups for implicit time but not amplitude; however, the spatial location of these changes could not be identified. In contrast, ST-PLS detected significant changes between groups and displayed the spatial location of these changes on the retinal map and the temporal location within the mfERG waveforms. ST-PLS confirmed that changes to diabetic retinal function occur before the onset of clinical pathology. In addition, it revealed two distinct patterns of change depending on whether the multifocal paradigm was optimised to target outer retinal function (photoreceptors) or middle/inner retinal function (collector cells).

Keywords

mfERG Partial least squares Diabetes Signal averaging 

Notes

Acknowledgments

This study was partially funded by the Juvenile Diabetes Research Foundation (JDRF 1-2005-1116) and the Canadian Institute of Health Research (CIHR 219857). Author JN was supported by grants from Region Västra Götaland, Sweden (“Agreement concerning research and education of doctors” ALFGBG-146731). The funding sources had no input in the conduct of this research or the preparation of this article.

Conflict of interest

None.

References

  1. 1.
    Sutter EE (2001) Imaging visual function with the multifocal m-sequence technique. Vision Res 41:1241–1255PubMedCrossRefGoogle Scholar
  2. 2.
    Hood DC, Bach M, Brigell M et al (2012) ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol Adv Ophthalmol 124:1–13CrossRefGoogle Scholar
  3. 3.
    de Rouck AF (2006) History of the electroretinogram. In: Heckenlively JR, Arden GB (eds) Principals and practice of clinical electrophysiology of vision. MIT Press, Massachusetts, pp 3–11Google Scholar
  4. 4.
    Marmor MF, Fultona B, Holder GE et al (2009) ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol Adv Ophthalmol 118:69–77CrossRefGoogle Scholar
  5. 5.
    McIntosh AR, Bookstein FL, Haxby JV et al (1996) Spatial pattern analysis of functional brain images using partial least squares. NeuroImage 3:143–157PubMedCrossRefGoogle Scholar
  6. 6.
    Krishnan A, Williams LJ, McIntosh AR et al (2011) Partial least squares (PLS) methods for neuroimaging: a tutorial and review. Neuroimage 56:455–475PubMedCrossRefGoogle Scholar
  7. 7.
    Protzner AB, Cortese F, Alain C et al (2009) The temporal interaction of modality specific and process specific neural networks supporting simple working memory tasks. Neuropsychologia 47:1954–1963PubMedCrossRefGoogle Scholar
  8. 8.
    Khan MI, Barlow RB, Weinstock RS (2011) Acute hypoglycemia decreases central retinal function in the human eye. Vision Res 51:1623–1626PubMedCrossRefGoogle Scholar
  9. 9.
    Melendez-Ramirez LY, Richards RJ, Cefalu WT (2010) Complications of type 1 diabetes. Endocrinol Metab Clin North Am 39:625–640PubMedCrossRefGoogle Scholar
  10. 10.
    Klein R, Klein BE, Moss SE et al (1984) The Wisconsin epidemiologic study of diabetic retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–526PubMedCrossRefGoogle Scholar
  11. 11.
    (1991) Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98:786–806Google Scholar
  12. 12.
    Shirao Y, Kawasaki K (1998) Electrical responses from diabetic retina. Progr Retin Eye Res 17:59–76CrossRefGoogle Scholar
  13. 13.
    Arden GB (1986) Hamilton a M, Wilson-Holt J, et al. Pattern electroretinograms become abnormal when background diabetic retinopathy deteriorates to a preproliferative stage: possible use as a screening test. Br J Ophthalmol 70:330–335PubMedCrossRefGoogle Scholar
  14. 14.
    Miyake Y (1990) Macular oscillatory potentials in humans. Macular OPs. Doc Ophthalmol Adv Ophthalmol 75:111–124CrossRefGoogle Scholar
  15. 15.
    Onozu H, Yamamoto S (2003) Oscillatory potentials of multifocal electroretinogram retinopathy. Doc Ophthalmol 106:327–332PubMedCrossRefGoogle Scholar
  16. 16.
    Bearse MA, Han Y, Schneck ME et al (2004) Local multifocal oscillatory potential abnormalities in diabetes and early diabetic retinopathy. Invest Ophthalmol Vis Sci 45:3259–3265PubMedCrossRefGoogle Scholar
  17. 17.
    Bearse MA, Han Y, Schneck ME et al (2004) Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 45:296–304PubMedCrossRefGoogle Scholar
  18. 18.
    Kurtenbach A, Langrova H, Zrenner E (2000) Multifocal oscillatory potentials in type 1 diabetes without retinopathy. Invest Ophthalmol Vis Sci 41:3234–3241PubMedGoogle Scholar
  19. 19.
    Lakhani E, Wright T, Abdolell M et al (2010) Multifocal ERG defects associated with insufficient long-term glycemic control in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci 51:5297–5303PubMedCrossRefGoogle Scholar
  20. 20.
    Han Y, Bearse MA, Schneck ME et al (2004) Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci 45:948–954PubMedCrossRefGoogle Scholar
  21. 21.
    Harrison WW, Bearse MA, Ng JS et al (2011) Multifocal electroretinograms predict onset of diabetic retinopathy in adult patients with diabetes. Invest Ophthalmol Vis Sci 52:772–777PubMedCrossRefGoogle Scholar
  22. 22.
    Ng JS, Bearse MA, Schneck ME et al (2008) Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci 49:1622–1628PubMedCrossRefGoogle Scholar
  23. 23.
    Han Y, Adams AJ, Bearse MAJ et al (2004) Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol 122:1809–1815PubMedCrossRefGoogle Scholar
  24. 24.
    Bearse MAJ, Sutter EE (1996) Imaging localized retinal dysfunction with the multifocal electroretinogram. J Opt Soc Am A: 13:634–640CrossRefGoogle Scholar
  25. 25.
    Hood DC, Frishman LJ, Saszik S et al (2002) Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci 43:1673–1685PubMedGoogle Scholar
  26. 26.
    Wright T, Nilsson J, Gerth C et al (2008) A comparison of signal detection techniques in the multifocal electroretinogram. Doc Ophthalmol Adv Ophthalmol 117:163–170CrossRefGoogle Scholar
  27. 27.
    Hood D, Li J (1997) A technique for measuring individual multifocal ERG records. Trends Opt Photon 11:280–293Google Scholar
  28. 28.
    Filliben JJ, Heckert A. Exploratory Data Analysis. NIST/SEMATECH e-Handbook of Statistical Methods. 2003.http://www.itl.nist.gov/div898/handbook/. Accessed 31 Mar2012
  29. 29.
    Fortune B, Schneck ME, Adams AJ (1999) Multifocal electroretinogram delays reveal local retinal dysfunction in early diabetic retinopathy. Invest Ophthalmol Vis Sci 40:2638–2651PubMedGoogle Scholar
  30. 30.
    Schneck ME, Bearse MAJ, Han Y et al (2004) Comparison of mfERG waveform components and implicit time measurement techniques for detecting functional change in early diabetic eye disease. Doc Ophthalmol 108:223–230PubMedCrossRefGoogle Scholar
  31. 31.
    Bearse MA, Shimada Y, Sutter EE (2000) Distribution of oscillatory components in the central retina. Doc Ophthalmol Adv Ophthalmol 100:185–205CrossRefGoogle Scholar
  32. 32.
    Itier RJ, Taylor MJ, Lobaugh NJ (2004) Spatiotemporal analysis of event-related potentials to upright, inverted, and contrast-reversed faces: effects on encoding and recognition. Psychophysiology 41:643–653PubMedCrossRefGoogle Scholar
  33. 33.
    Wright T, Cortese F, Westall C (2008) A novel approach analyzing multifocal ERGs: spatiotemporal partial least squares (ST-PLS). Doc Ophthal 117:49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tom Wright
    • 1
    • 2
    Email author
  • Filomeno Cortese
    • 3
  • Josefin Nilsson
    • 1
  • Carol Westall
    • 2
    • 4
  1. 1.Department of Clinical Neuroscience, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGöteborgSweden
  2. 2.Ophthalmology and Vision SciencesThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Seaman Family MR Research Centre, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
  4. 4.Ophthalmology and Vision SciencesUniversity of TorontoTorontoCanada

Personalised recommendations