Documenta Ophthalmologica

, Volume 123, Issue 1, pp 51–57 | Cite as

Normal sensory and absent cognitive electrophysiological responses in functional visual loss following chemical eye burn

  • Nada Jiraskova
  • Miroslav Kuba
  • Jan Kremlacek
  • Pavel Rozsival
Case Report

Abstract

Objective

To present a unique case of a 34-year-old patient with unilateral functional visual loss after chemical burn with normal visual evoked potentials (VEPs) and absent cognitive response (P300 wave).

Methods

Visual functions, complete ophthalmic and neurologic examinations including computed tomography of the brain, electrophysiological testing of the visual pathway up to the cognitive brain cortex were evaluated. Data were collected prospectively during 1-year follow-up and compared with data from published case series and a literature review.

Results

No abnormalities were found that could account for such a rapid monocular loss of vision with exception of absence of the P300 wave in the affected eye during cognitive tasks. Vision slowly improved during 1 year without any treatment.

Conclusions

Functional vision loss is a diagnosis of exclusion. In the event of reduced vision in the context of a normal ocular health examination, all other pathology must be ruled out before the diagnosis of functional visual loss is established. Complex visual electrophysiological testing is the preferred tool for objective examination of such disorders.

Keywords

Non-organic vision loss Pattern-reversal VEPs Motion-onset VEPs Visual ERPs 

References

  1. 1.
    Villegas RB, Ilsen PF (2007) Functional vision loss: a diagnosis of exclusion. Optometry 78:523–533PubMedGoogle Scholar
  2. 2.
    Stone J, Smyth R, Carson A, Lewis S, Prescott R, Warlow C, Sharpe M (2005) Systematic review of misdiagnosis of conversion symptoms and “hysteria”. BMJ. doi:10.1136/bmj.38628.466898.55
  3. 3.
    Ellwanger J, Tenhula WN, Rosenfeld JP, Sweet JJ (1999) Identifying simulators of cognitive deficit through combined use of neuropsychological test performance and event-related potentials. J Clin Exp Neuropsychol 21(6):866–879PubMedCrossRefGoogle Scholar
  4. 4.
    Lorenz J, Kunze K, Bromm B (1998) Differentiation of conversive sensory loss and malingering by P300 in a modified oddball task. Neuroreport 9(2):187–191PubMedCrossRefGoogle Scholar
  5. 5.
    Jeon YW, Polich J (2001) P3a from a passive visual stimulus task. Clin Neurophysiol 112(12):2202–2208PubMedCrossRefGoogle Scholar
  6. 6.
    Kubova Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35(2):197–205PubMedCrossRefGoogle Scholar
  7. 7.
    Heinrich SP (2007) A primer on motion visual evoked potentials. Doc Ophthalmol 114(2):83–105PubMedCrossRefGoogle Scholar
  8. 8.
    Kuba M, Kubova Z, Kremlacek J, Langrova J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47(2):189–202PubMedCrossRefGoogle Scholar
  9. 9.
    Kremlacek J, Kuba M, Kubova Z, Chlubnova J (2004) Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol 109(2):169–175PubMedCrossRefGoogle Scholar
  10. 10.
    Kremlacek J, Kuba M, Chlubnova J, Kubova Z (2004) Effect of stimulus localisation on motion-onset VEP. Vision Res 44(26):2989–3000PubMedCrossRefGoogle Scholar
  11. 11.
    Kuba M, Kubova Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80(1):83–89PubMedCrossRefGoogle Scholar
  12. 12.
    Kubova Z, Chlubnova J, Szanyi J, Kuba M, Kremlacek J (2005) Influence of physiological changes of glycemia on VEPs and visual ERPs. Physiol Res 54:245–250PubMedGoogle Scholar
  13. 13.
    Kubova Z, Kremlacek J, Valis M, Szanyi J, Langrova J, Vit F, Kuba M (2010) Effect of memantine in Alzheimer’s disease evaluated by visual-evoked potentials to pattern-reversal, motion-onset, and cognitive stimuli. J Clin Neurophysiol 27:334–340PubMedCrossRefGoogle Scholar
  14. 14.
    Langrova J, Kuba M, Kremlacek J, Kubova Z, Vit F (2006) Motion-onset VEPs reflect long maturation and early aging of visual motion-processing system. Vis Res 46:536–544PubMedCrossRefGoogle Scholar
  15. 15.
    Mayou R, Kirmayer LJ, Simon G, Kroenke K, Sharpe M (2005) Somatoform disorders: time for a new approach in DSM-V. Am J Psychiatry 162(5):847–855PubMedCrossRefGoogle Scholar
  16. 16.
    Henningsen P, Zimerman T, Sattel H (2003) Medically unexplained physical symptoms, anxiety, and depression: a meta-analytical review. Psychosom Med 65(4):528–533PubMedCrossRefGoogle Scholar
  17. 17.
    Sharpe M (2002) Medically unexplained symptoms and syndromes. Clin Med 2(6):501–504PubMedGoogle Scholar
  18. 18.
    Stone J, Carson A, Sharpe M (2005) Functional symptoms in neurology: management. Neurol Pract 76(SI):i13–i21Google Scholar
  19. 19.
    Beatty S (1999) Non-organic visual loss. Postgrad Med J 75:201–207PubMedGoogle Scholar
  20. 20.
    Raghunandan A, Buckingham RS (2008) The utility of clinical electrophysiology in a case of nonorganic vision loss. Optometry 79:436–443PubMedGoogle Scholar
  21. 21.
    Niemeyer G, Barthelmes D (2010) Looking at non-organic visual loss. Doc Ophthalmol 121(Suppl.1):9–10Google Scholar
  22. 22.
    Heinrich SP, Marhöfer D, Bach M (2010) “Cognitive” visual acuity estimation based on the event-related potential. Clin Neurophysiol 12:1464–1472CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Nada Jiraskova
    • 1
  • Miroslav Kuba
    • 2
  • Jan Kremlacek
    • 2
  • Pavel Rozsival
    • 1
  1. 1.Department of OphthalmologyCharles University in Prague, Faculty of Medicine and University HospitalHradec KraloveCzech Republic
  2. 2.Department of Pathophysiology, Electrophysiological LabCharles University in Prague, Faculty of Medicine in Hradec KralovePragueCzech Republic

Personalised recommendations