Documenta Ophthalmologica

, Volume 121, Issue 1, pp 37–49 | Cite as

Visual evoked potentials to pattern, motion and cognitive stimuli in Alzheimer’s disease

  • Z. Kubová
  • J. Kremláček
  • M. Vališ
  • J. Langrová
  • J. Szanyi
  • F. Vít
  • M. Kuba
Original research article


The aim of our study was to verify reported visual dysfunctions of patients with Alzheimer disease with the use of several variants of VEPs and visual ERPs and to learn whether these methods can be useful in diagnostics of AD. We tested 15 patients (6 women and 9 men, aged from 58 to 87) with mild to moderate Alzheimer disease (12–23 points of Mini Mental State Examination) and 15 age, gender and education level matched controls. The examination consisted of VEPs to pattern-reversal and motion-onset stimulation (to translational and radial movement) and of visual ERPs recorded during an odd-ball test. The subjects were instructed to signalize target stimuli by pressing of a button, which enabled to evaluate also the reaction time. While pattern-reversal VEPs were comparable in patients and controls, there were significantly smaller N2 peak amplitudes of motion-onset VEPs in patients with AD (in particular in radial moving stimuli outside the central 20 deg of the visual field), which suggests a dysfunction of the motion-processing (magnocellular) system or the dorsal cortical stream. ERPs, having significantly longer latencies in patients than in controls, distinguished well both groups. However, the individual AD diagnostics based on ERPs seems to be limited by rather high inter-individual variability of the ERP latencies. The ERPs might, however, be useful in disease progress and therapy effect estimation. Electrophysiological parameters did not correlate with neuropsychological ADAS cog test (Alzheimer Disease Assessment Scale—cognitive part).


Visual evoked potentials Visually evoked cognitive potentials VEPs ERPs Motion Alzheimer’s disease 



Supported by Czech Ministry of Education (VZ 0021620816).


  1. 1.
    von Gunten A, Giannakopoulos P, Bouras C, Hof PR (2004) Neuropathological changes in visuospatial systems in Alzheimer’s disease. In: Cronin-Colomb A, Hof PR (eds) Vision in Alzheimer’s disease, vol 34. Karger, Basel, pp 30–62CrossRefGoogle Scholar
  2. 2.
    Gilmore GC, Wenk HE, Naylor LA, Koss E (1994) Motion perception and Alzheimer’s disease. J Gerontol 49(2):P52–P57PubMedGoogle Scholar
  3. 3.
    Rizzo M, Nawrot M (1998) Perception of movement and shape in Alzheimer’s disease. Brain 121(Pt 12):2259–2270CrossRefPubMedGoogle Scholar
  4. 4.
    Tetewsky SJ, Duffy CJ (1999) Visual loss and getting lost in Alzheimer’s disease. Neurology 52(5):958–965PubMedGoogle Scholar
  5. 5.
    Duffy CJ (2009) Visual motion processing in aging and Alzheimer’s disease: neuronal mechanisms and behavior from monkeys to man. Ann N Y Acad Sci 1170:736–744CrossRefPubMedGoogle Scholar
  6. 6.
    Mapstone M, Dickerson K, Duffy CJ (2008) Distinct mechanisms of impairment in cognitive ageing and Alzheimer’s disease. Brain 131(Pt 6):1618–1629CrossRefPubMedGoogle Scholar
  7. 7.
    O’Brien HL, Tetewsky SJ, Avery LM, Cushman LA, Makous W, Duffy CJ (2001) Visual mechanisms of spatial disorientation in Alzheimer’s disease. Cereb Cortex 11(11):1083–1092CrossRefPubMedGoogle Scholar
  8. 8.
    Kavcic V, Fernandez R, Logan D, Duffy CJ (2006) Neurophysiological and perceptual correlates of navigational impairment in Alzheimer’s disease. Brain 129(Pt 3):736–746CrossRefPubMedGoogle Scholar
  9. 9.
    Cronin-Golomb A, Corkin S, Growdon JH (1995) Visual dysfunction predicts cognitive deficits in Alzheimer’s disease. Optom Vis Sci 72(3):168–176CrossRefPubMedGoogle Scholar
  10. 10.
    Fernandez R, Kavcic V, Duffy CJ (2007) Neurophysiologic analyses of low- and high-level visual processing in Alzheimer disease. Neurology 68(24):2066–2076CrossRefPubMedGoogle Scholar
  11. 11.
    Kuba M, Kubova Z (1992) Visual evoked potentials specific for motion onset. Doc Ophthalmol 80(1):83–89CrossRefPubMedGoogle Scholar
  12. 12.
    Kubova Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res 35(2):197–205CrossRefPubMedGoogle Scholar
  13. 13.
    Hollants-Gilhuijs MA, De Munck JC, Kubova Z, van Royen E, Spekreijse H (2000) The development of hemispheric asymmetry in human motion VEPs. Vision Res 40(1):1–11CrossRefPubMedGoogle Scholar
  14. 14.
    Brecelj J, Kakigi R, Koyama S, Hoshiyama M (1998) Visual evoked magnetic responses to central and peripheral stimulation: simultaneous VEP recordings. Brain Topogr 10(3):227–237PubMedGoogle Scholar
  15. 15.
    Nakamura M, Kakigi R, Okusa T, Hoshiyama M, Watanabe K (2000) Effects of check size on pattern reversal visual evoked magnetic field and potential. Brain Res 872(1–2):77–86CrossRefPubMedGoogle Scholar
  16. 16.
    Di Russo F, Pitzalis S, Spitoni G, Aprile T, Patria F, Spinelli D, Hillyard SA (2005) Identification of the neural sources of the pattern-reversal VEP. Neuroimage 24(3):874–886CrossRefPubMedGoogle Scholar
  17. 17.
    Polich J, Ladish C, Bloom FE (1990) P300 assessment of early Alzheimer’s disease. Electroencephalogr Clin Neurophysiol 77(3):179–189CrossRefPubMedGoogle Scholar
  18. 18.
    Williams PA, Jones GH, Briscoe M, Thomas R, Cronin P (1991) P300 and reaction-time measures in senile dementia of the Alzheimer type. Br J Psychiatry 159:410–414CrossRefPubMedGoogle Scholar
  19. 19.
    Pokryszko-Dragan A, Slotwinski K, Podemski R (2003) Modality-specific changes in P300 parameters in patients with dementia of the Alzheimer type. Med Sci Monit 9(4): CR130–CR134Google Scholar
  20. 20.
    Polich J, Corey-Bloom J (2005) Alzheimer’s disease and P300: review and evaluation of task and modality. Curr Alzheimer Res 2(5):515–525CrossRefPubMedGoogle Scholar
  21. 21.
    Hill C (2008) What is the mini mental state exam? How the mini mental state exam is used in the diagnosis of Alzheimer’s disease. http://alzheimersaboutcom/od/diagnosisofalzheimers/a/MMSEhtm
  22. 22.
    Feldman HH, Woodward M (2005) The staging and assessment of moderate to severe Alzheimer disease. Neurology 65(suppl 3):S10–S17Google Scholar
  23. 23.
    Göpfert E, Schlykowa L, Müller R (1988) Zur Topographie des Bewegungs VEP in Menschen. Zeitschrift EEG-EMG 19:14–20Google Scholar
  24. 24.
    Kremlacek J, Kuba M, Kubova Z, Chlubnova J (2004) Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol 109(2):169–175CrossRefPubMedGoogle Scholar
  25. 25.
    Hoffmann MB, Bach M (2002) The distinction between eye and object motion is reflected by the motion-onset visual evoked potential. Exp Brain Res 144(2):141–151CrossRefPubMedGoogle Scholar
  26. 26.
    Kuba M, Kubova Z, Kremlacek J, Langrova J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vision Res 47(2):189–202CrossRefPubMedGoogle Scholar
  27. 27.
    Kubova Z, Chlubnova J, Szanyi J, Kuba M, Kremlacek J (2005) Influence of physiological changes of glycaemia on VEPs and visual ERPs. Physiol Res 54(2):245–250PubMedGoogle Scholar
  28. 28.
    Erkinjuntti T, Kurz A, Gauthier S, Bullock R, Lilienfeld S, Damaraju CV (2002) Efficacy of galantamine in probable vascular dementia and Alzheimer’s disease combined with cerebrovascular disease: a randomised trial. Lancet 359(9314):1283–1290CrossRefPubMedGoogle Scholar
  29. 29.
    Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  30. 30.
    Heinrich SP, Bach M (2003) Adaptation characteristics of steady-state motion visual evoked potentials. Clin Neurophysiol 114(7):1359–1366CrossRefPubMedGoogle Scholar
  31. 31.
    Heinrich SP (2007) A primer on motion visual evoked potentials. Doc Ophthalmol 114(2):83–105CrossRefPubMedGoogle Scholar
  32. 32.
    Hof PJ, Bouras C, Morrison JH (1999) Cortical neuropathology in ageing and dementing disorders; neuronal typology, connectivity, and selective vulnerability. In: Morrison JH, Peters A (eds) Neurodegenerative and age-related changes in structure and function of cerebral cortex (cerebral cortex), vol 14. Kluwer/Plenum Publishers, New York, pp 175–312Google Scholar
  33. 33.
    Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586PubMedGoogle Scholar
  34. 34.
    Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. J Neurophysiol 49(5):1148–1167PubMedGoogle Scholar
  35. 35.
    Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236(3):549–573PubMedGoogle Scholar
  36. 36.
    Thiyagesh SN, Farrow TF, Parks RW, Accosta-Mesa H, Young C, Wilkinson ID, Hunter MD, Woodruff PW (2009) The neural basis of visuospatial perception in Alzheimer’s disease and healthy elderly comparison subjects: an fMRI study. Psychiatry Res 172(2):109–116CrossRefPubMedGoogle Scholar
  37. 37.
    Ball KK, Roenker DL, Bruni JR (1990) Developmental changes in attention and visual search throughout adulthood. In: Enns J (ed) The development of attention: research and theory. Elsevier, North Holland, pp 489–508CrossRefGoogle Scholar
  38. 38.
    Ball K (1997) Attentional problems and older drivers. Alzheimer Dis Assoc Disord 11(Suppl 1):42–47CrossRefPubMedGoogle Scholar
  39. 39.
    Duchek JM, Hunt L, Ball K, Buckles V, Morris JC (1998) Attention and driving performance in Alzheimer’s disease. J Gerontol B Psychol Sci Soc Sci 53(2):P130–P141PubMedGoogle Scholar
  40. 40.
    Trick GL, Trick LR, Morris P, Wolf M (1995) Visual field loss in senile dementia of the Alzheimer’s type. Neurology 45(1):68–74PubMedGoogle Scholar
  41. 41.
    Kremlacek J, Kuba M, Chlubnova J, Kubova Z (2004) Effect of stimulus localisation on motion-onset VEP. Vision Res 44(26):2989–3000CrossRefPubMedGoogle Scholar
  42. 42.
    Gibson JJ (ed) (1950) The perception of visual world. Houghton Mifflin, BostonGoogle Scholar
  43. 43.
    Wright CE, Harding GF, Orwin A (1986) The flash and pattern VEP as a diagnostic indicator of dementia. Doc Ophthalmol 62(1):89–96CrossRefPubMedGoogle Scholar
  44. 44.
    Philpot MP, Amin D, Levy R (1990) Visual evoked potentials in Alzheimer’s disease: correlations with age and severity. Electroencephalogr Clin Neurophysiol 77(5):323–329CrossRefPubMedGoogle Scholar
  45. 45.
    Zimmer R, Walther H, Kurz A, Haupt M, Lehmann-Horn F, Lauter H (1991) Visual evoked potentials in Alzheimer’s and Parkinson disease. EEG EMG Z Elektroenzephalogr Elektromyogr Verwandte Geb 22(4):239–245PubMedGoogle Scholar
  46. 46.
    Kergoat H, Kergoat MJ, Justino L, Chertkow H, Robillard A, Bergman H (2002) Visual retinocortical function in dementia of the Alzheimer type. Gerontology 48(4):197–203CrossRefPubMedGoogle Scholar
  47. 47.
    Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7(6):1799–1808PubMedGoogle Scholar
  48. 48.
    Kubova Z, Kuba M, Juran J, Blakemore C (1996) Is the motion system relatively spared in amblyopia? Evidence from cortical evoked responses. Vision Res 36(1):181–190CrossRefPubMedGoogle Scholar
  49. 49.
    Halliday AM (1993) The visual evoked potential in the investigation of diseases of the optic nerve. In: Halliday AM (ed) Evoked potentials in clinical testing. Churchill-Livingstone, Edinburg, pp 195–278Google Scholar
  50. 50.
    Verleger R, Kompf D, Neukater W (1992) Event-related EEG potentials in mild dementia of the Alzheimer type. Electroencephalogr Clin Neurophysiol 84(4):332–343CrossRefPubMedGoogle Scholar
  51. 51.
    Saito H, Yamazaki H, Matsuoka H, Matsumoto K, Numachi Y, Yoshida S, Ueno T, Sato M (2001) Visual event-related potential in mild dementia of the Alzheimer’s type. Psychiatry Clin Neurosci 55(4):365–371CrossRefPubMedGoogle Scholar
  52. 52.
    Daffner KR, Rentz DM, Scinto LF, Faust R, Budson AE, Holcomb PJ (2001) Pathophysiology underlying diminished attention to novel events in patients with early AD. Neurology 56(10):1377–1383PubMedGoogle Scholar
  53. 53.
    Onofri M, Gambi D, Del Re M, Fulgente T, Bazzano S, Colamartino P, Malatesta G (1991) Mapping of event related potential to auditory and visual odd ball paradigms in patients affected by different forms of dementia. Europena Neurology 31:259–269CrossRefGoogle Scholar
  54. 54.
    Evers S, Grotemeyer KH, Husstedt IW, Bauer B, Suhr B (1996) Reproducibility of event-related potentials in M. Alzheimer. Electroencephalogr Clin Neurophysiol 99:361Google Scholar
  55. 55.
    Polich J, Hoffman LD (1998) Alzheimer’s disease and P300—evaluation of modality and task difficulty. In: Koga Y, Nagata K, Hirata K (eds) Brain topography today. Elsevier, New York, pp 527–536Google Scholar
  56. 56.
    Swanwick GR, Rowan M, Coen RF, O’Mahony D, Lee H, Lawlor BA, Walsh JB, Coakley D (1996) Clinical application of electrophysiological markers in the differential diagnosis of depression and very mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 60(1):82–86CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Z. Kubová
    • 1
  • J. Kremláček
    • 1
  • M. Vališ
    • 2
  • J. Langrová
    • 1
  • J. Szanyi
    • 1
  • F. Vít
    • 1
  • M. Kuba
    • 1
  1. 1.Department of Pathophysiology, Faculty of MedicineCharles UniversityHradec KrálovéCzech Republic
  2. 2.Neurologic Clinic of University HospitalHradec KrálovéCzech Republic

Personalised recommendations