Influence of narcotics on luminance and frequency modulated visual evoked potentials in rats

  • T. JehleEmail author
  • D. Ehlken
  • K. Wingert
  • T. J. Feuerstein
  • M. Bach
  • W. A. Lagrèze
Original Research Article


Quantification of visual function is essential for the impact of disease models and their treatment. Recently, we introduced a chronic implant model to record visual evoked potentials (VEP) in awake Brown–Norway rats. Here, we investigated the hemispheric distribution of VEP after monocular stimulation, the chronic electrode implantation and the influence of commonly used anesthetics. Potentials were recorded by electrodes, implanted epidurally over the superior colliculus. The entire visual field of the rat was stimulated. Flicker stimuli were modulated in luminance with a modulation depth from 5 to 80% at 7.5 Hz and flashes with a modulation depth of >95% in a frequency range of 2.9–38 Hz. Recordings were constant over 9 days. When one eye was blinded, the potentials recorded from the contralateral side were not affected, while the potentials of the ipsilateral side were markedly reduced. Further, potentials of awake animals were compared with those receiving general anesthetics. For one group of rats (n = 8), we administered isoflurane by inhalation in five concentrations. Four different groups (n = 7–11) were given choralhydrate (200 and 400 mg/kg) and the combination of ketamine/xyaline (65/7 or 130/14 mg/kg, respectively) intraperitoneally. Isoflurane depressed the VEP in a concentration-dependent manner. Treatment with chloralhydrate and ketamine/xyaline increased the VEP at low concentrations and depressed it in high concentrations. The new VEP paradigm assesses distinct qualities of contrast vision in rats. All tested narcotics alter VEP amplitudes and can be avoided.


Visual evoked potential Rat Chronic electrode implant Modulation depth Flash frequency 



Retinal ganglion cells


Visual evoked potentials



The authors wish to thank to Frank Huete and Herbert Graner for their excellent technical support. The study was supported by the Ernst und Berta Grimmke Stiftung, Germany.


  1. 1.
    Jehle T, Lagreze WA, Blauth E, Knorle R, Schnierle P, Lucking CH, Feuerstein TJ (2000) Gabapentin-lactam (8-aza-spiro[5, 4]decan-9-on; GBP-L) inhibits oxygen glucose deprivation-induced [3H]glutmate release and is a neuroprotective agent in amodel of acute retinal ischemia. Naunyn Schmiedebergs Arch Pharmacol 362:74–81PubMedCrossRefGoogle Scholar
  2. 2.
    Lagreze WA, Knorle R, Bach M, Feuerstein TJ (1998) Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia. Invest Ophthalmol Vis Sci 39:1063–1066PubMedGoogle Scholar
  3. 3.
    Levin LA (2005) Neuroprotection and regeneration in glaucoma. Ophthalmol Clin North Am 18:585–596 viiPubMedCrossRefGoogle Scholar
  4. 4.
    Hughes WF (1991) Quantitation of ischemic damage in the rat retina. Exp Eye Res 53:573–582PubMedCrossRefGoogle Scholar
  5. 5.
    Lafuente Lopez-Herrera MP, Mayor-Torroglosa S, Miralles de Imperial J, Villegas-Perez MP, Vidal-Sanz M (2002) Transient ischemia of the retina results in altered retrograde axoplasmic transport: neuroprotection with brimonidine. Exp Neurol 178:243–258PubMedCrossRefGoogle Scholar
  6. 6.
    Maier K, Merkler D, Gerber J, Taheri N, Kuhnert AV, Williams SK, Neusch C, Bahr M, Diem R (2007) Multiple neuroprotective mechanisms of minocycline in autoimmune CNS inflammation. Neurobiol Dis 25(3):514–525PubMedCrossRefGoogle Scholar
  7. 7.
    Diem R, Hobom M, Maier K, Weissert R, Storch MK, Meyer R, Bahr M (2003) Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway. J Neurosci 23:6993–7000PubMedGoogle Scholar
  8. 8.
    Bernstein SL, Guo Y, Kelman SE, Flower RW, Johnson MA (2003) Functional and cellular responses in a novel rodent model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci 44:4153–4162PubMedCrossRefGoogle Scholar
  9. 9.
    Grozdanic SD, Sakaguchi DS, Kwon YH, Kardon RH, Sonea IM (2003) Functional characterization of retina and optic nerve after acute ocular ischemia in rats. Invest Ophthalmol Vis Sci 44:2597–2605PubMedCrossRefGoogle Scholar
  10. 10.
    Ben-Shlomo G, Bakalash S, Lambrou GN, Latour E, Dawson WW, Schwartz M, Ofri R (2005) Pattern electroretinography in a rat model of ocular hypertension: functional evidence for early detection of inner retinal damage. Exp Eye Res 81:340–349PubMedGoogle Scholar
  11. 11.
    Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79:539–546PubMedCrossRefGoogle Scholar
  12. 12.
    Brigell M, Bach M, Barber C, Kawasaki K, Kooijman A (1998) Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision. calibration standard committee of the international society for clinical electrophysiology of vision (ISCEV). Doc Ophthalmol 95:1–14PubMedCrossRefGoogle Scholar
  13. 13.
    Damiani Cavero S, Viera Aleman C, Santos Anzorandia C, Bacallao Gallestey J, Febles Pinar E, Rivero Moreno M (1997) Anesthetic agents and visual evoked potentials in patients undergoing transphenoidal or breast reconstruction surgery. Neurologia (Barcelona, Spain) 12:51–55Google Scholar
  14. 14.
    Thiel A, Russ W, Hempelmann G (1988) Evoked potentials and inhalation anesthetics. Klin Wochenschr 66(Suppl 14):11–18PubMedGoogle Scholar
  15. 15.
    Guarino I, Loizzo S, Lopez L, Fadda A, Loizzo A (2004) A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies. Neural Plast 11:241–250PubMedCrossRefGoogle Scholar
  16. 16.
    Jehle T, Kunze D, Wingert K, Bach M, Largreze WA (2008) Modulation of contrast depth and flash frequencies: effects on visual evoked potentials recorded in awake, freely moving brown Norway rats. Invest Ophthalmol Vis Sci 48:3756Google Scholar
  17. 17.
    Kelly DH (1961) Visual response to time-dependent stimuli. I. Amplitude sensitivity measurements. Rinsho Eiyo 51:422–429Google Scholar
  18. 18.
    Schober W (1975) The primary optical projection in albino and pigmented rats. Anat Anz 137:257–286PubMedGoogle Scholar
  19. 19.
    Wizenmann A, Thanos S, von Boxberg Y, Bonhoeffer F (1993) Differential reaction of crossing and non-crossing rat retinal axons on cell membrane preparations from the chiasm midline: an in vitro study. Development 117:725–735PubMedGoogle Scholar
  20. 20.
    Brankack J, Klingberg F (1990) Permanent changes of the visually evoked responses in the superior colliculus after early postnatal treatment with monosodium-L-glutamate. Biomed Biochim Acta 49:481–487PubMedGoogle Scholar
  21. 21.
    Bringmann A, Klingberg F (1995) Behavior-dependent and drug-induced changes of rat visual evoked potential: relation to the EEG spectral power. Neuropsychobiology 31:89–97PubMedCrossRefGoogle Scholar
  22. 22.
    Cedzich C, Schramm J (1990) Monitoring of flash visual evoked potentials during neurosurgical operations. Int Anesthesiol Clin 28:165–169PubMedCrossRefGoogle Scholar
  23. 23.
    Makela K, Hartikainen K, Rorarius M, Jantti V (1996) Suppression of F-VEP during isoflurane-induced EEG suppression. Electroencephalogr Clin Neurophysiol 100:269–272PubMedCrossRefGoogle Scholar
  24. 24.
    Villeneuve MY, Casanova C (2003) On the use of isoflurane versus halothane in the study of visual response properties of single cells in the primary visual cortex. J Neurosci Methods 129:19–31PubMedCrossRefGoogle Scholar
  25. 25.
    Dzoljic M, Rupreht J, Erdmann W, Stijnen TH, van Briemen LJ, Dzoljic MR (1994) Behavioral and electrophysiological aspects of nitrous oxide dependence. Brain Res Bull 33:25–31PubMedCrossRefGoogle Scholar
  26. 26.
    Ilie A, Spulber S, Avramescu S, Nita DA, Zagrean AM, Zagrean L, Moldovan M (2006) Delayed ischemic electrocortical suppression during rapid repeated cerebral ischemia and kainate-induced seizures in rat. Eur J NeuroSci 23:2135–2144PubMedCrossRefGoogle Scholar
  27. 27.
    Guire ES, Lickey ME, Gordon B (1999) Critical period for the monocular deprivation effect in rats: assessment with sweep visually evoked potentials. J Neurophysiol 81:121–128PubMedGoogle Scholar
  28. 28.
    Takeda M, Onoda N, Suzuki M (1994) Characterization of thyroid hormone effect on the visual system of the adult rat. Thyroid 4:467–474PubMedCrossRefGoogle Scholar
  29. 29.
    Goto Y, Furuta A, Tobimatsu S (2001) Magnesium deficiency differentially affects the retina and visual cortex of intact rats. J Nutr 131:2378–2381PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • T. Jehle
    • 1
    Email author
  • D. Ehlken
    • 1
  • K. Wingert
    • 1
  • T. J. Feuerstein
    • 1
  • M. Bach
    • 1
  • W. A. Lagrèze
    • 1
  1. 1.Universtity Eye Hospital FreiburgFreiburg im BreisgauGermany

Personalised recommendations